Linux backtrace的实现原理

2024-04-24 19:08
文章标签 实现 linux 原理 backtrace

本文主要是介绍Linux backtrace的实现原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在平时写应用程序中,当项目庞大后,遇到程序崩溃后需要查看函数的调用流程,在gdb中可用bt命令快速的查看backtrace,那么backtrace的实现原理是什么呢,接下来就认识学习一下。

backtrace实例代码

使用glibc提供的backtrace函数实现函数调用流程抓取,代码如下:

#include <stdio.h>
#include <execinfo.h>#define MAX_LEVEL 4static void test3()
{int i = 0;void *buffer[MAX_LEVEL] = {0};int size = backtrace(buffer, MAX_LEVEL);for(i=0; i<size; i++){printf("called by %p\n", buffer[i]);}
}static void test2(){test3();return;
}static void test1(){test2();return;
}int main(int argc, char* argv[])
{test1();return 0;
}

编译:

gcc -g -Wall bt.c -o bt

打印:

called by 0x4005bd
called by 0x400601
called by 0x400612
called by 0x40062e

打印出backtrace函数位置调用函数的地址,可以看到有4个函数调用地址,使用addr2line命令可以实现地址到文件代码位置转换:

./bt | awk '{print "addr2line "$3" -e bt"}' > t.sh; chmod +x t.sh; ./t.sh
/home/yubo.wang/backtrace/bt.c:10
/home/yubo.wang/backtrace/bt.c:18
/home/yubo.wang/backtrace/bt.c:23
/home/yubo.wang/backtrace/bt.c:29

编译时需加上-g参数,并且不能strip,否则不能正常打印行号和文件名。

还有不需要使用addr2line就能打印出函数名的backtrace_symbols,如下:

backtrace_symbols实例代码

backtrace_symbols能打印出函数名。

#include <execinfo.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>#define SIZE 100void
myfunc3(void)
{int i, j, nptrs;void *buffer[100];char **strings;nptrs = backtrace(buffer, SIZE);printf("backtrace() returned %d addresses\n", nptrs);printf("backtrace:\n");for(i=0; i<nptrs; i++){printf("called by %p\n", buffer[i]);}/* The call backtrace_symbols_fd(buffer, nptrs, STDOUT_FILENO)would produce similar output to the following: */strings = backtrace_symbols(buffer, nptrs);if (strings == NULL) {perror("backtrace_symbols");exit(EXIT_FAILURE);}printf("backtrace_symbols:\n");for (j = 0; j < nptrs; j++)printf("%s\n", strings[j]);free(strings);
}static void   /* "static" means don't export the symbol... */
myfunc2(void)
{myfunc3();
}void
myfunc(int ncalls)
{if (ncalls > 1)myfunc(ncalls - 1);elsemyfunc2();
}int
main(int argc, char *argv[])
{if (argc != 2) {fprintf(stderr, "%s num-calls\n", argv[0]);exit(EXIT_FAILURE);}myfunc(atoi(argv[1]));exit(EXIT_SUCCESS);
}

编译:

gcc -g -Wall -rdynamic bt-sb.c -o bt-sb

-g选项新添加的是调试信息(一系列.debug_xxx段),被相关调试工具,比如gdb使用,可以被strip掉。

-rdynamic选项新添加的是动态连接符号信息,用于动态连接功能,比如dlopen()系列函数、backtrace()系列函数使用,不能被strip掉;添加-rdynamic选项后,.dynsym表就包含了所有的符号,不仅是已使用到的外部动态符号,还包括本程序内定义的符号,比如函数main、myfunc、myfunc3等。 

运行:

backtrace() returned 8 addresses
backtrace:
called by 0x400a7c
called by 0x400b8c
called by 0x400bb3
called by 0x400bac
called by 0x400bac
called by 0x400c0e
called by 0x7fd2e4ce0f45
called by 0x400999
backtrace_symbols:
./bt-sb(myfunc3+0x1f) [0x400a7c]
./bt-sb() [0x400b8c]
./bt-sb(myfunc+0x25) [0x400bb3]
./bt-sb(myfunc+0x1e) [0x400bac]
./bt-sb(myfunc+0x1e) [0x400bac]
./bt-sb(main+0x59) [0x400c0e]
/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf5) [0x7fd2e4ce0f45]
./bt-sb() [0x400999]

疑问:函数名后面的+0x1f表示什么?

backtrace实现原理

当函数被调用时,先把函数的参数压入栈中,C语言先压入最后一个参数,最后压入第一个参数,参数个数在哪儿呢??

然后压入EIP和EBP,此时EIP指向本次完成调用后下一条指令的地址,我们可以近似的认为这个地址是函数调用者的地址,因为调用一个函数后一般情况下是需要返回到调用者调用函数的位置。

EBP是调用者和被调函数之间的分割线,上面是调用者的,下面被调函数的,具体需要再研究一下。

最后压入的被调函数本身,并为它分配临时变量的空间,不同的GCC版本临时变量存放不同高低地址。

实现backtrace步骤:

1、获取当前函数的EBP;

2、通过EBP获得调用者的EIP;

3、通过EBP获得上级的EBP;

4、重复这个过程直到结束;

gcc4.8生成的代码,当前函数的最后一个临时变量的下一个位置就是EBP,这样的话就可以使用临时变量获得EBP,实现代码如下:

#include <stdio.h>#define MAX_LEVEL 4#ifdef NEW_GCC
#define OFFSET 4
#else
#define OFFSET 0
#endifint backtrace(void **buffer, int size)
{int n = 0xfefefefe;int *p = &n;int i = 0;int ebp = p[1+OFFSET];int eip = p[2+OFFSET];for(i=0; i<size; i++){buffer[i] = (void *)eip;p = (int *)ebp;ebp = p[0];eip = p[1];}return size;
}static void test3(){int i = 0;void *buffer[MAX_LEVEL] = {0};backtrace(buffer, MAX_LEVEL);for(i=0; i<MAX_LEVEL; i++){printf("called by %p\n", buffer[i]);}
}static void test2(){test3();return;
}static void test1(){test2();return;
}int main(int argc, char* argv[])
{test1();return 0;
}

编译:

gcc -g -Wall -DNEW_GCC bt-ebp.c -o bt-ebp

运行:

yubo.wang@ubuntu:backtrace$ ./bt-ebp
Segmentation fault (core dumped)

问题待解决。。。

这篇关于Linux backtrace的实现原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932591

相关文章

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Linux samba共享慢的原因及解决方案

《Linuxsamba共享慢的原因及解决方案》:本文主要介绍Linuxsamba共享慢的原因及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux samba共享慢原因及解决问题表现原因解决办法总结Linandroidux samba共享慢原因及解决

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI