基于STM32的DAC简易信号发生器设计(HAL库)

2024-04-24 18:04

本文主要是介绍基于STM32的DAC简易信号发生器设计(HAL库),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:本文为手把手教学制造 DAC 简易信号发生器的教程,本教程的 MCU 使用 STM32F103ZET6 。以 HAL 库的 DAC 函数作为代码基础进行编程,使得信号发生器可以产生各种类型的信号波,包括:方波、三角波、正弦波和噪声波,该博客提供了各样的 API 函数供读者朋友直接使用,函数可以使得 STM32 的 DAC 输出规定频率的各类波形(频率范围有一定局限性)。DAC 与信号发生器都是嵌入式工作中十分常见的,希望这篇博文能给读者朋友的工程项目给予些许帮助。(代码开源!

实验硬件:STM32F103ZET6;手持小型示波器

项目实物:

项目效果图:

引脚连接:

STM32 与 示波器 引脚:

STM32.PA4->示波器

一、DAC概述

DAC(Digital-to-Analog Converter),即数字模拟转换器,是将数字信号转换为模拟信号的电路。DAC 的主要组成部分是数字信号处理模块、数字模数转换模块、数字信号输出模块和模拟信号处理模块。其中,数字信号处理模块负责对输入的数字信号进行处理,如滤波、放大、数字信号处理算法等,数字模数转换模块将数字信号转换为模拟信号,数字信号输出模块将数字信号输出到数字模数转换模块,模拟信号处理模块负责对输出的模拟信号进行滤波、放大等处理。

STM32 的 DAC 模块(数字/模拟转换模块)是12位数字输入,电压输出型的 DAC(0~3.3V)。DAC 可以配置为 8 位或 12 位模式,也可以与 DMA 控制器配合使用。DAC 工作在 12 位模式时,数据可以设置成左对齐或右对齐。DAC 模块有 2 个输出通道,每个通道都有单独的转换器。在双 DAC 模式下,2 个通道可以独立地进行转换,也可以同时进行转换并同步地更新 2 个通道的输出。DAC 可以通过引脚输入参考电压 VREF+ 以获得更精确的转换结果。

STM32 的 DAC 模块特点有:

(1) 2 个 DAC 转换器:每个转换器对应 1 个输出通道

(2) 8 位或者 12 位单调输出

(3) 12 位模式下数据左对齐或者右对齐

(4) 同步更新功能

(5) 噪声波形生成

(6) 三角波形生成

(7) 双 DAC 通道同时或者分别转换

(8) 每个通道都有 DMA 功能

二、简易信号发生器

简易信号发生器是一种基本的电子测试设备,用于生成各种电信号,通常用于电子工程、通信系统测试以及教育等领域。它能够产生正弦波、方波、三角波等不同类型的波形,以及不同频率和幅度的信号。

信号发生器通常具有以下特点:

  1. 紧凑的设计:简易信号发生器体积小巧,便于携带和使用。
  2. 易于操作:设备上配有旋钮、开关等,用于调节输出信号的频率、幅度和其他参数。
  3. 多功能性:尽管是简易型,但许多信号发生器仍能提供多种波形输出,以满足不同测试需求。
  4. 经济实惠:相比于专业级的信号发生器,简易信号发生器价格更加亲民,适合预算有限的用户。

在教育领域,简易信号发生器常用于教授电子学基础知识,帮助学生更好地理解信号处理和电路工作原理。在业余电子爱好者和电子工程技术人员中,它也是一个实用的工具,用于电路调试和性能测试。 

三、CubeMX配置

1、RCC配置外部高速晶振(精度更高)——HSE;

2、SYS配置:Debug设置成Serial Wire(否则可能导致芯片自锁);

3、DAC配置:将DAC设置为TIM2触发事件更新;

4、TIM配置:将TIM2的时钟频率设置为2MHz,且触发事件更新;

5、时钟树配置:

6、工程配置:

四、各种类型DAC输出代码

STM32 的 DAC 不仅可以输出可调电压(0~3.3v),还可以输出各种类型的信号波。该博客提供的信号源包括:方波、正弦波、三角波以及噪声波。使用的函数拟合手段进行数据点拟合出需要的信号源,优点:可以自动计算出波形所需要的数据值;缺点:需要消耗CPU资源进行计算。

4.1 可调输出电压

int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_DAC_Init();MX_TIM2_Init();/* USER CODE BEGIN 2 */HAL_TIM_Base_Start(&htim2);         		/* 开启定时器2 */HAL_DAC_Start(&hdac, DAC_CHANNEL_1);/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, 2048);	//可调输出电压		}/* USER CODE END 3 */
}

DAC 输出的模拟电压(DAC 的数字范围0~4095,代码预设为2048):

Value = 2048/4095*3.3 = 1.65v

4.2 方波

方波是一种非正弦曲线的波形,通常会与电子和讯号处理时出现。理想方波只有“高”和“低”这两个值。电流或电压的波形为矩形的信号即为矩形波信号,高电平在一个波形周期内占有的时间比值称为占空比,也可理解为电路释放能量的有效释放时间与总释放时间的比值。占空比为50%的矩形波称之为方波,方波有低电平为零与为负之分。必要时,可加以说明“低电平为零”、“低电平为负”。

★本篇博客的频率方波的产生原理:

利用 Delay_us 函数用来制造出 us 级的延迟,通过 HAL_DAC_SetValue 函数周期性设置 DAC 的输出电压数值进行方波模拟。

/*** @brief       产生频率方波* @note        方波频率存在局限性!* @param       maxval : 最大值(0 < maxval < 4095)* @param       frequency: 方波的频率* @retval      无*/
void Frequency_square_wave(uint16_t maxval, uint16_t frequency)
{HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, maxval);Delay_us(1000000/(2*frequency));HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, 0);Delay_us(1000000/(2*frequency));
}/* 毫秒级延迟(系统版) */
void Delay_us(uint32_t udelay)
{uint32_t startval,tickn,delays,wait;startval = SysTick->VAL;tickn = HAL_GetTick();//sysc = 72000;  //SystemCoreClock / (1000U / uwTickFreq);delays =udelay * 72; //sysc / 1000 * udelay;if(delays > startval){while(HAL_GetTick() == tickn){}wait = 72000 + startval - delays;while(wait < SysTick->VAL){}}else{wait = startval - delays;while(wait < SysTick->VAL && HAL_GetTick() == tickn){}}
}

main函数: 

Frequency_square_wave(2048,600);						/* 频率方波 */		

代码预设的方波电压值应该为:1.66V左右,频率为:600Hz

手持小型示波器的输出:

4.3 正弦波

STM32 的 DAC 是没有直接输出正弦波的功能,所以只能模拟一个正弦波,并且进行输出。

本篇博客使用正点原子的正弦波产生函数进行数据拟合,以此来产生需要的正弦波 DAC 数值。

正弦波,也称为 Sin 波,是最基本也是最常见的波形之一。它是一种连续变化的波形,其特点是电压或电流随时间呈现出平滑的、周期性的正弦变化。正弦波在科学和工程中有广泛的应用。在交流电(AC)系统中,正弦波是电压和电流的主要波形。在信号处理和通信领域,正弦波因其简单的数学特性而被用作基础信号,用于分析和合成复杂的信号。此外,正弦波在声学、振动分析和许多其他物理现象的研究中也非常重要。

 y = 2048*sin((2\pi /samples)*x)+2048

使用上式可以模拟出一个正弦函数所需要的采样点数值,即 DAC 的数字量。

/*** @brief       产生正弦波序列函数* @note        需保证: maxval > samples/2* @param       maxval : 最大值(0 < maxval < 2048)* @param       samples: 采样点的个数* @retval      无*/
void DAC_creat_sin_buf(uint16_t maxval, uint16_t samples, uint16_t time)
{uint8_t i;float outdata = 0;                     /* 存放计算后的数字量 */float inc = (2 * 3.1415962) / samples; /* 计算相邻两个点的x轴间隔 */if(maxval <= (samples / 2))return ;	   /* 数据不合法 */for (i = 0; i < samples; i++){/* * 正弦波函数解析式:y = Asin(ωx + φ)+ b* 计算每个点的y值,将峰值放大maxval倍,并将曲线向上偏移maxval到正数区域* 注意:DAC无法输出负电压,所以需要将曲线向上偏移一个峰值的量,让整个曲线都落在正数区域* 由于sin函数消耗CPU时间较长,结合DAC频率与sin函数,每次触发DAC设置大概耗时0.00004s(可根据自己实际情况测试)*/outdata = maxval * sin(inc * i) + maxval;if(outdata > 4095)outdata = 4095; /* 上限限定 */HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, outdata);Delay_us(time);}
}/*** @brief       产生频率正弦波* @note        需保证: maxval > samples/2, 且产生的频率受限* @param       maxval : 最大值(0 < maxval < 2048)* @param       frequency: 正弦波的频率* @retval      无*/
void Frequency_sin_wave(uint16_t maxval, uint16_t frequency)
{int time;time = 5000/frequency-43;DAC_creat_sin_buf(maxval,200,time);	
}

main函数: 

Frequency_sin_wave(2000,20);								/* 频率的正弦波 */

手持小型示波器的输出:

4.4 三角波

STM32 的 DAC 是可以直接输出一个三角波的,但是可操作性偏低,本篇博客使用函数拟合出频率三角波。

三角波(Triangle wave)是一种非正弦波,其波形类似于数学中的三角函数,但更具体地,它的形状类似于直角三角形的斜边。三角波的数学表达式可以通过积分正弦波或方波来得到,也可以通过线性组合傅里叶级数来构造。三角波在电子学、音乐合成和信号处理等领域有应用。例如,在模拟电子音乐合成器中,三角波是一种常用的波形,因为它可以产生丰富的谐波结构。

三角波的输入计算推导如下:

输出频率 = 1000/(dt * samp),即可 Frequency = 10000/dt。值得注意的是:当 dt 数值偏小时,譬如 dt 小于 5us 时,延迟函数本身精度将不准确,导致产生的三角波频率也会不准确,所以应该尽可能保证延迟时间的适当性!

/*** @brief       设置DAC_OUT1输出三角波* @note        输出频率 ≈ 1000 / (dt * samples) Khz, 不过在dt较小的时候,比如小于5us时, 由于delay_us*              本身就不准了(调用函数,计算等都需要时间,延时很小的时候,这些时间会影响到延时), 频率会偏小.* * @param       maxval : 最大值(0 < maxval < 4096), (maxval + 1)必须大于等于samples/2* @param       dt     : 每个采样点的延时时间(单位: us)* @param       samples: 采样点的个数, samples必须小于等于(maxval + 1) * 2 , 且maxval不能等于0* @param       n      : 输出波形个数,0~65535** @retval      无*/
void DAC_triangular_wave(uint16_t maxval, uint16_t dt, uint16_t samples, uint16_t n)
{uint16_t i, j;float incval;                               /* 递增量 */float Curval;                               /* 当前值 */if(samples > ((maxval + 1) * 2))return ;    /* 数据不合法 */incval = (maxval + 1) / (samples / 2);      /* 计算递增量 */for(j = 0; j < n; j++){ Curval = 0;HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, Curval);    /* 先输出0 */for(i = 0; i < (samples / 2); i++)      /* 输出上升沿 */{Curval  +=  incval;                 /* 新的输出值 */HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, Curval);Delay_us(dt);}for(i = 0; i < (samples / 2); i++)      /* 输出下降沿 */{Curval  -=  incval;                 /* 新的输出值 */HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, Curval);Delay_us(dt);}}
}/*** @brief       产生频率三角波* @note        需保证: maxval > samples/2,且产生的频率受限* @param       maxval : 最大值(0 < maxval < 4095)* @param       frequency: 三角波频率* @retval      无*/
void Frequency_triangular_wave(uint16_t maxval, uint16_t frequency)
{int time;time = 10000/frequency;DAC_triangular_wave(maxval, time, 100,1000);
}

main函数: 

Frequency_triangular_wave(2000,50);            /* 频率的三角波 */

手持小型示波器的输出:

4.5 噪声波

噪声波,通常简称为噪声,是指在信号传输、处理或生成过程中引入的不希望有的、无规律的波动。噪声可以源自各种不同的原因,包括电子设备的电子迁移、热噪声、电磁干扰、机械振动等。在信号处理和通信领域,噪声通常被视为不必要的信息,它会干扰有用信号的传输和解释。 

/*** @brief       产生噪声波* @param       maxval : 最大值(0 < maxval < 4095)* @retval      无*/
void DAC_noise_wave(uint16_t maxval)
{int val = 0;								/* 噪声幅值 */val = rand()%maxval;				/* 随机制造噪声幅值 */HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, val);
}

main函数: 

DAC_noise_wave(2000);						/* 噪声波 */

手持小型示波器的输出:

4.6  完整代码

signal.h:

#ifndef __SIGNAL_H
#define __SIGNAL_H#include "stm32f1xx.h"/* Signal Generator */
void DAC_creat_sin_buf(uint16_t maxval, uint16_t samples, uint16_t time);
void DAC_triangular_wave(uint16_t maxval, uint16_t dt, uint16_t samples, uint16_t n);
void DAC_noise_wave(uint16_t maxval);
void Frequency_square_wave(uint16_t maxval, uint16_t frequency);
void Frequency_sin_wave(uint16_t maxval, uint16_t frequency);
void Frequency_triangular_wave(uint16_t maxval, uint16_t frequency);
void Delay_us(uint32_t udelay);#endif

signal.c:

/********************************* (C) COPYRIGHT **********************************
* File Name						: signal.c
* Author						: 混分巨兽龙某某
* Version						: V1.0.0
* Data							: 2024/01/03
* Contact						: QQ:1178305328
* Description					: Signal generator function file
***********************************************************************************/
#include "signal.h"
#include "math.h"
#include "dac.h"
#include "stdlib.h"/*** @brief       产生正弦波序列函数* @note        需保证: maxval > samples/2* @param       maxval : 最大值(0 < maxval < 2048)* @param       samples: 采样点的个数* @retval      无*/
void DAC_creat_sin_buf(uint16_t maxval, uint16_t samples, uint16_t time)
{uint8_t i;float outdata = 0;                     /* 存放计算后的数字量 */float inc = (2 * 3.1415962) / samples; /* 计算相邻两个点的x轴间隔 */if(maxval <= (samples / 2))return ;	   /* 数据不合法 */for (i = 0; i < samples; i++){/* * 正弦波函数解析式:y = Asin(ωx + φ)+ b* 计算每个点的y值,将峰值放大maxval倍,并将曲线向上偏移maxval到正数区域* 注意:DAC无法输出负电压,所以需要将曲线向上偏移一个峰值的量,让整个曲线都落在正数区域* 由于sin函数消耗CPU时间较长,结合DAC频率与sin函数,每次触发DAC设置大概耗时0.00004s(可根据自己实际情况测试)*/outdata = maxval * sin(inc * i) + maxval;if(outdata > 4095)outdata = 4095; /* 上限限定 */HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, outdata);Delay_us(time);}
}/*** @brief       设置DAC_OUT1输出三角波* @note        输出频率 ≈ 1000 / (dt * samples) Khz, 不过在dt较小的时候,比如小于5us时, 由于delay_us*              本身就不准了(调用函数,计算等都需要时间,延时很小的时候,这些时间会影响到延时), 频率会偏小.* * @param       maxval : 最大值(0 < maxval < 4096), (maxval + 1)必须大于等于samples/2* @param       dt     : 每个采样点的延时时间(单位: us)* @param       samples: 采样点的个数, samples必须小于等于(maxval + 1) * 2 , 且maxval不能等于0* @param       n      : 输出波形个数,0~65535** @retval      无*/
void DAC_triangular_wave(uint16_t maxval, uint16_t dt, uint16_t samples, uint16_t n)
{uint16_t i, j;float incval;                               /* 递增量 */float Curval;                               /* 当前值 */if(samples > ((maxval + 1) * 2))return ;    /* 数据不合法 */incval = (maxval + 1) / (samples / 2);      /* 计算递增量 */for(j = 0; j < n; j++){ Curval = 0;HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, Curval);    /* 先输出0 */for(i = 0; i < (samples / 2); i++)      /* 输出上升沿 */{Curval  +=  incval;                 /* 新的输出值 */HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, Curval);Delay_us(dt);}for(i = 0; i < (samples / 2); i++)      /* 输出下降沿 */{Curval  -=  incval;                 /* 新的输出值 */HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, Curval);Delay_us(dt);}}
}/*** @brief       产生噪声波* @param       maxval : 最大值(0 < maxval < 4095)* @retval      无*/
void DAC_noise_wave(uint16_t maxval)
{int val = 0;								/* 噪声幅值 */val = rand()%maxval;				/* 随机制造噪声幅值 */HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, val);
}/*** @brief       产生频率方波* @note        方波频率受限* @param       maxval : 最大值(0 < maxval < 4095)* @param       frequency: 方波的频率* @retval      无*/
void Frequency_square_wave(uint16_t maxval, uint16_t frequency)
{HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, maxval);Delay_us(1000000/(2*frequency));HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, 0);Delay_us(1000000/(2*frequency));
}/*** @brief       产生频率正弦波* @note        需保证: maxval > samples/2, 且产生的频率受限* @param       maxval : 最大值(0 < maxval < 2048)* @param       frequency: 正弦波的频率* @retval      无*/
void Frequency_sin_wave(uint16_t maxval, uint16_t frequency)
{int time;time = 5000/frequency-43;DAC_creat_sin_buf(maxval,200,time);	
}/*** @brief       产生频率三角波* @note        需保证: maxval > samples/2,且产生的频率受限* @param       maxval : 最大值(0 < maxval < 2048)* @param       frequency: 三角波频率* @retval      无*/
void Frequency_triangular_wave(uint16_t maxval, uint16_t frequency)
{int time;time = 10000/frequency;DAC_triangular_wave(maxval, time, 100,1000);
}/* 毫秒级延迟(系统版) */
void Delay_us(uint32_t udelay)
{uint32_t startval,tickn,delays,wait;startval = SysTick->VAL;tickn = HAL_GetTick();//sysc = 72000;  //SystemCoreClock / (1000U / uwTickFreq);delays =udelay * 72; //sysc / 1000 * udelay;if(delays > startval){while(HAL_GetTick() == tickn){}wait = 72000 + startval - delays;while(wait < SysTick->VAL){}}else{wait = startval - delays;while(wait < SysTick->VAL && HAL_GetTick() == tickn){}}
}

五、博客总结

本篇博客设计的简易信号发生器可以产生各种类型且频率指定的信号波,但受限于代码与硬件等因素,其产生信号的频率进度很一般,只能近似去使用。如果读者朋友需要使用精度很高的信号发生器,建议购买专门的硬件和芯片去设计。

本篇博客的各种类型DAC信号波使用的是数据拟合手段进行,该手段的优势是可以直接在源代码上改频率和幅值即可输出需要的信号波,缺点则是需要消耗CPU资源进行计算。如果,读者朋友有一些特殊情况,需要保证 CPU 的计算速率,可以直接使用 Matlab 去拟合好 DAC 信号波的数值,再使用数组中的数据实现信号波产生。

六、代码开源

代码地址: 基于STM32的DAC简易信号发生器设计代码资源-CSDN文库

如果积分不够的朋友,点波关注评论区留下邮箱,作者无偿提供源码和后续问题解答。求求啦关注一波吧 !!!

这篇关于基于STM32的DAC简易信号发生器设计(HAL库)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932452

相关文章

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参

使用PyQt实现简易文本编辑器

《使用PyQt实现简易文本编辑器》这篇文章主要为大家详细介绍了如何使用PyQt5框架构建一个简单的文本编辑器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录分析主窗口类 (MyWindow)菜单操作语法高亮 (SyntaxHighlighter)运行程序主要组件代码图示分析实现

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

用Java打造简易计算器的实现步骤

《用Java打造简易计算器的实现步骤》:本文主要介绍如何设计和实现一个简单的Java命令行计算器程序,该程序能够执行基本的数学运算(加、减、乘、除),文中通过代码介绍的非常详细,需要的朋友可以参考... 目录目标:一、项目概述与功能规划二、代码实现步骤三、测试与优化四、总结与收获总结目标:简单计算器,设计

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

无线路由器哪个品牌好用信号强? 口碑最好的三个路由器大比拼

《无线路由器哪个品牌好用信号强?口碑最好的三个路由器大比拼》不同品牌在信号覆盖、稳定性和易用性等方面各有特色,如何在众多选择中找到最适合自己的那款无线路由器呢?今天推荐三款路由器让你的网速起飞... 今天我们来聊聊那些让网速飞起来的路由器。在这个信息爆炸的时代,一个好路由器简直就是家庭网编程络的心脏。无论你

电脑显示hdmi无信号怎么办? 电脑显示器无信号的终极解决指南

《电脑显示hdmi无信号怎么办?电脑显示器无信号的终极解决指南》HDMI无信号的问题却让人头疼不已,遇到这种情况该怎么办?针对这种情况,我们可以采取一系列步骤来逐一排查并解决问题,以下是详细的方法... 无论你是试图为笔记本电脑设置多个显示器还是使用外部显示器,都可能会弹出“无HDMI信号”错误。此消息可能

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

通过C#和RTSPClient实现简易音视频解码功能

《通过C#和RTSPClient实现简易音视频解码功能》在多媒体应用中,实时传输协议(RTSP)用于流媒体服务,特别是音视频监控系统,通过C#和RTSPClient库,可以轻松实现简易的音视... 目录前言正文关键特性解决方案实现步骤示例代码总结最后前言在多媒体应用中,实时传输协议(RTSP)用于流媒体服