本科生如何入门学习机器学习

2024-04-24 17:18
文章标签 学习 入门 机器 本科生

本文主要是介绍本科生如何入门学习机器学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 谢邀写这篇blog哈哈,一直没有写blog的想法,平时都是自己边学习边把知识点总结到纸上。关于学习方法的问题,我个人觉得很重要,机器学习这一块点很多,有数学,有计算机,有应用,有方法论,如何在本科生阶段玩转机器学习呢,我觉得很重要一点就是学习方法了,这个靠大家平时学习时候去总结,当然在我blog里面我会不时穿插一些我自己的学习方法,以下仅仅是本人在大学两年学习中相对来说比较短的时间接触机器学习的一些心得体会及学习经验的分享,希望能给大家带来一些启发,不足之处望大家指正。

        进入正题,一名本科生如何入门学习机器学习?

        此处我们暂且不论文科生,理科生工科生课程大多在大一会有高等数学和线性代数两门课,机器学习大约需要多少数学知识呢?个人觉得如果你是想从事机器学习算法基层工作,偏做数学学术的同学,你可以本科两年左右把高代、数分这些主干课过一遍,至于大三的一些实分析、复分析、泛函实变这些,个人觉得机器学习极少用到这些,当然也可能是我程度还不够深入,我的建议是大家不要浮躁地一开始就拿着代码开始撸项目,但是也不要读成书呆子,大家一定要明白一个观点,如果你不想成为陈景润那样的数学家,大可不必花上大把时间在各种各样的数学专业书上。那么回到我们的问题机器学习到底需要多少数学知识呢?从我个人学习经验,鄙人在学校大约学过高等数学、线性代数、离散数学、概率论与数理统计这四门主干课,平均分大约在88分左右,至于为什么平均分没上95,是因为实在是懒得复习每本书那一章背的让人头疼的公式,机器学习需要的数学大约是高数微分积分思想那块(泰勒展开可以好好复习复习)、线性代数基础书加上部分求导(矩阵的迹这些)、概率论与数理统计(贝叶斯看看,然后是分布那块),这几块内容实在在这几本书算是基本内容了,很简单。之前见过一些,有的可能会说这些操作在现在流行的平台都有许多包能用巴拉巴拉的,但是不要忘了我们虽然不是“造房子”的人,但是最基本的一些东西还是希望同学们在学习的过程中去证明证明。在已有比较好的数学基础上去看机器学习的算法会轻松很多,也解决了部分同学一心趴倒在数学坑里的问题(执着于数学的科研小伙伴请忽略我这一大段话,统计学大佬惹不起)。

        好啦,以上就是机器学习在数学方面的要求。接下来我们可以愉快地学习机器学习啦。

        这里我说说我的入门,一开始很荣幸一个大佬给我讲了机器学习一些思想,顺便安利了我辈楷模Andrew ng,一开始在网易云看了一遍带massac的视频,憋的不要不要,很多地方一知半解,练习也较少,看完之后懵懵懂懂吧,当时是边刷周志华老师的西瓜书(这个不必说了吧,另一个大佬,据说最近评上了ieee fellow的亚洲主席来着),当时大约是大二上学期结束后的寒假,痛并快乐着。过了一段时间,朋友圈另外一个大佬alexa哈哈,疯狂在刷coursera,抱着萌新心态一搜,不得了哇(coursera为ng所创立),然后不知不觉刷完了stanford的ml课程,并做完了所有练习。做的同时二刷周志华老师的西瓜书,痛并快乐着。

        不得不说ml博大精深,看了很久很久,我发现自己还是停留在学习阶段,也就是怎么说,在有的人看来屌屌的,但是实际上让我立马接一个项目,感觉压力山大啊。这时候我打开的B乎,手动滑稽脸,发现李航老师的《统计学习方法》,这个评价不是一般的好,继续买书刷书,刷完感觉数学功底理解上升了一个层次。以上书籍都很安利的。后来alexa大佬在刷华盛顿大学的ml课程,据说也很nice,但是课程量太大加上后来国家某局狂搞vpn,没得看,算是小遗憾了。

        刷完统计学习方法对不对,不得不再吹一句,机器学习也是大学科,类别是真的多。转眼到大二下学期的暑假,看大佬无聊的时候演示一波R的文本分词,着实欢喜,自学了一波R语言(ps那时的我执着于用octave处理一切问题),美滋滋。当然我继续搜淘宝,淘到一本机器学习实践,看来是harrinton大佬写的,很nice带源码,小伙伴们刷起吧,不解释,不过这本书没刷完因为其他一些项目耽误了。(python也是真滴好用,当然包这一块强推anaconda,conda指令有些坑处我自己慢慢爬出来的,有问题的同学可以留言)。

        搞了一波事情,发觉无聊了,这时候来了本深度学习,还是yoshia bengio大佬,别说了,再贵都买,目前刷了五章, 一直炒现饭,我给自己本科要求是不玩深度学习,但是进来了还是看看吧,就是玩玩,没指望自己能玩转卷积这些,只是看看。近期什么状态呢,(⊙o⊙)…

        其实从暑假后期开始,我重心转向托福了,打算年底刷一波分,然后再投入到令人向往的事业来hhhh,不过现在看起来又要重新进坑了。两个教授给我发出申请,给研究生讲讲我的学习方法交流交流,maybe已经走在大部分人前面,现在是想划水划不动了,每周跟着一帮研究生开组会,过起了研究生+本科生双重生活。文中如有冒犯请别跟小人一般见识,现在是大三狗了,只能划两年,出国跟着某苦逼导师消耗自己两三年的生命投身科研吧,当然就是说说,有大佬带就好,现在处于不想自己带队的状态,手上有一手资源,但是不想用23333,感谢让我再休息一阵子哈哈哈哈,劳模下线了。如果想了解细节可以留言,我有时间有想法了可以不定期更新一两波干货。鄙人爱好较多,欢迎找我打桥牌啊之类的,棋现在不想约了,小提琴处于想拉就拉的状态,为bigbang着迷的程序猿,balabala当日记写着玩哈哈。

这篇关于本科生如何入门学习机器学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932349

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多