hive udtf的使用

2024-04-24 16:32
文章标签 使用 hive udtf

本文主要是介绍hive udtf的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文:http://blog.linezing.com/2011/03/hive%E4%B8%ADudtf%E7%BC%96%E5%86%99%E5%92%8C%E4%BD%BF%E7%94%A8


1. UDTF介绍

UDTF(User-Defined Table-Generating Functions)  用来解决 输入一行输出多行(On-to-many maping) 的需求。

2. 编写自己需要的UDTF

  • 继承org.apache.hadoop.hive.ql.udf.generic.GenericUDTF。
  • 实现initialize, process, close三个方法
  • UDTF首先会调用initialize方法,此方法返回UDTF的返回行的信息(返回个数,类型)。初始化完成后,会调用process方法,对传入的参数进行处理,可以通过forword()方法把结果返回。最后close()方法调用,对需要清理的方法进行清理。

下面是我写的一个用来切分”key:value;key:value;”这种字符串,返回结果为key, value两个字段。供参考:

   1: import java.util.ArrayList;

   2:

   3: import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;

   4: import org.apache.hadoop.hive.ql.exec.UDFArgumentException;

   5: import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;

   6: import org.apache.hadoop.hive.ql.metadata.HiveException;

   7: import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;

   8: import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;

   9: import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;

  10: import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;

  11:

  12: public class ExplodeMap extends GenericUDTF{

  13:

  14:     @Override

  15:     public void close() throws HiveException {

  16:         // TODO Auto-generated method stub    

  17:     }

  18:

  19:     @Override

  20:     public StructObjectInspector initialize(ObjectInspector[] args)

  21:             throws UDFArgumentException {

  22:         if (args.length != 1) {

  23:             throw new UDFArgumentLengthException("ExplodeMap takes only one argument");

  24:         }

  25:         if (args[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {

  26:             throw new UDFArgumentException("ExplodeMap takes string as a parameter");

  27:         }

  28:

  29:         ArrayList<String> fieldNames = new ArrayList<String>();

  30:         ArrayList<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();

  31:         fieldNames.add("col1");

  32:         fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);

  33:         fieldNames.add("col2");

  34:         fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);

  35:

  36:         return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames,fieldOIs);

  37:     }

  38:

  39:     @Override

  40:     public void process(Object[] args) throws HiveException {

  41:         String input = args[0].toString();

  42:         String[] test = input.split(";");

  43:         for(int i=0; i<test.length; i++) {

  44:             try {

  45:                 String[] result = test[i].split(":");

  46:                 forward(result);

  47:             } catch (Exception e) {

  48:                 continue;

  49:             }

  50:         }

  51:     }

  52: }

3. 使用方法

UDTF有两种使用方法,一种直接放到select后面,一种和lateral view一起使用。

1:直接select中使用:select explode_map(properties) as (col1,col2) from src;

  • 不可以添加其他字段使用:select a, explode_map(properties) as (col1,col2) from src
  • 不可以嵌套调用:select explode_map(explode_map(properties)) from src
  • 不可以和group by/cluster by/distribute by/sort by一起使用:select explode_map(properties) as (col1,col2) from src group by col1, col2

2:和lateral view一起使用:select src.id, mytable.col1, mytable.col2 from src lateral view explode_map(properties) mytable as col1, col2;

  • 此方法更为方便日常使用。执行过程相当于单独执行了两次抽取,然后union到一个表里。

4. 参考文档


http://wiki.apache.org/hadoop/Hive/LanguageManual/UDF

http://wiki.apache.org/hadoop/Hive/DeveloperGuide/UDTF

http://www.slideshare.net/pauly1/userdefined-table-generating-functions

5 测试实例参考:

注:自己额外添加

测试 数据:
user action 1 2 3
user action 4 5 6 7
user action 8 9 10 11 12
建表:
CREATE external table wftest (user string,action string,objects string) ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' WITH SERDEPROPERTIES( 'input.regex' ='^([^\\s]*) ([^\\s]*) (.*)$') STORED AS TEXTFILE LOCATION '/user/hdfs/home/wangfeng4/';
hive> desc wftest;
OK
user string from deserializer
action string from deserializer
objects string from deserializer
Time taken: 0.25 seconds
hive> select * from wftest;
OK
user action 1 2 3
user action 4 5 6 7
user action 8 9 10 11 12
NULL NULL NULL
Time taken: 0.245 seconds
hive> select explode(split(objects," ")) as object from wftest;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
655.104: [GC 655.104: [ParNew: 1638400K->25080K(1843200K), 0.0364240 secs] 1638400K->25080K(2150400K), 0.0365450 secs] [Times: user=0.09 sys=0.01, real=0.04 secs]
Starting Job = job_201112221522_3256344, Tracking URL = http://jobtracker.aer.dip.sina.com.cn:50030/jobdetails.jsp?jobid=job_201112221522_3256344
Kill Command = /usr/lib/hadoop/bin/hadoop job -Dmapred.job.tracker=jobtracker.aer.dip.sina.com.cn:8021 -kill job_201112221522_3256344
2012-06-01 16:08:18,085 Stage-1 map = 0%, reduce = 0%
2012-06-01 16:08:21,109 Stage-1 map = 100%, reduce = 0%
2012-06-01 16:08:22,117 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201112221522_3256344
OK
1
2
3
4
5
6
7
8
9
10
11
12
Time taken: 16.78 seconds
hive> select user,explode(split(objects," ")) as object from wftest;
FAILED: Error in semantic analysis: UDTF's are not supported outside the SELECT clause, nor nested in expressions
hive>
最后一个 这种不支持。
如果觉得explode 不成 可以自己写udtf.

这篇关于hive udtf的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932247

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定