DPDK timer 解析

2024-04-23 23:44
文章标签 解析 dpdk timer

本文主要是介绍DPDK timer 解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 编译 DPDK timer

设置环境变量:

  • export RTE_SDK=/home//dpdk/dpdk-stable-19.08.2/
  • export RTE_TARGET=x86_64-native-linux-gcc

源码路径:./dpdk 源码/examples/timer/

编译方法:在上面路径下执行 make

目标文件路径:./dpdk 源码/examples/timer/build/timer

下面是 timer 部分运行结果:

可以看到的是有两个定时器 timer0 和 timer1, timer0 是绑定到当前 cpu 核心一直是 core 0 触发定时器 0,

而 timer1 则是在不同核心触发定时器 1。

EAL: Detected 8 lcore(s)
EAL: Detected 1 NUMA nodes
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
EAL: Selected IOVA mode 'PA'
EAL: Probing VFIO support...
EAL: VFIO support initialized
EAL: PCI device 0000:02:01.0 on NUMA socket -1
EAL:   Invalid NUMA socket, default to 0
EAL:   probe driver: 8086:100f net_e1000_em
EAL: PCI device 0000:02:06.0 on NUMA socket -1
EAL:   Invalid NUMA socket, default to 0
EAL:   probe driver: 8086:100f net_e1000_em
EAL: PCI device 0000:03:00.0 on NUMA socket -1
EAL:   Invalid NUMA socket, default to 0
EAL:   probe driver: 15ad:7b0 net_vmxnet3
EAL: PCI device 0000:0b:00.0 on NUMA socket -1
EAL:   Invalid NUMA socket, default to 0
EAL:   probe driver: 15ad:7b0 net_vmxnet3
Starting mainloop on core 1
Starting mainloop on core 2
Starting mainloop on core 3
Starting mainloop on core 4
Starting mainloop on core 5
Starting mainloop on core 6
Starting mainloop on core 7
Starting mainloop on core 0
timer1_cb() on lcore 1
timer1_cb() on lcore 2
timer0_cb() on lcore 0
timer1_cb() on lcore 3
timer1_cb() on lcore 4
timer1_cb() on lcore 5
timer0_cb() on lcore 0
timer1_cb() on lcore 6
timer1_cb() on lcore 7
timer1_cb() on lcore 0

2. DPDK API 学习

2.1. rte_timer_subsystem_init()

#include <rte_timer.h>
int rte_timer_subsystem_init(void);
//作用:确保定时器子系统被正确初始化,从而保证后续的定时器操作能够正常进行。

2.2. rte_timer_init()

#include <rte_timer.h>
void rte_timer_init(struct rte_timer *tim);
// 作用:初始化一个rte_timer对象

2.3. rte_get_timer_hz()

#include <rte_cycles.h>
uint64_t rte_get_timer_hz(void);
// 作用:函数用于获取系统定时器的频率,即每秒钟CPU时钟周期的数量。

2.4. rte_timer_reset()

#include <rte_timer.h>
void rte_timer_reset(struct rte_timer *tim,uint64_t ticks,enum rte_timer_type type,unsigned lcore_id,rte_timer_cb_t *f,void *arg);
//作用:函数用于重新设置定时器的参数,包括定时器的周期、触发模式、回调函数以及回调函数的参数等
//参数:
/*
tim       :指向要重新设置的定时器对象的指针。
ticks     :表示定时器的周期,即定时器触发的时间间隔,单位是CPU时钟周期数。
type      :表示定时器的触发模式,是一个枚举类型。常见的触发模式有:SINGLE    :单次触发,定时器只会在下一个周期触发一次,然后停止。PERIODICAL:周期性触发,定时器会在每个周期都触发一次,直到手动停止。
lcore_id  :表示定时器触发时要在哪个CPU核心上执行回调函数。
f         :是一个函数指针,指向定时器触发时要执行的回调函数。
arg       :是传递给回调函数的参数,可以是任意类型的指针,用于传递额外的数据给回调函数
*/

2.5. rte_timer_manage()

#include <rte_timer.h>
void rte_timer_manage(void);
//作用:管理系统中所有的定时器,检查是否有定时器已经到期(即触发),如果有则执行相应的回调函数。

3. 源代码

3.1. 使用 timer0 和 timer1

#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <errno.h>
#include <sys/queue.h>#include <rte_common.h>
#include <rte_memory.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_cycles.h>
#include <rte_timer.h>
#include <rte_debug.h>#define TIMER_RESOLUTION_CYCLES 20000000ULL /* around 10ms at 2 Ghz */static struct rte_timer timer0;
static struct rte_timer timer1;/* timer0 callback */
static void timer0_cb(__attribute__((unused)) struct rte_timer *tim, __attribute__((unused)) void *arg)
{static unsigned counter = 0;unsigned lcore_id = rte_lcore_id();printf("%s() on lcore %u\n", __func__, lcore_id);/* this timer is automatically reloaded until we decide to* stop it, when counter reaches 20. */if ((counter ++) == 20)rte_timer_stop(tim);
}/* timer1 callback */
static void timer1_cb(__attribute__((unused)) struct rte_timer *tim, __attribute__((unused)) void *arg)
{unsigned lcore_id = rte_lcore_id();uint64_t hz;printf("%s() on lcore %u\n", __func__, lcore_id);/* reload it on another lcore */hz = rte_get_timer_hz();lcore_id = rte_get_next_lcore(lcore_id, 0, 1);rte_timer_reset(tim, hz/3, SINGLE, lcore_id, timer1_cb, NULL);
}static __attribute__((noreturn)) int lcore_mainloop(__attribute__((unused)) void *arg)
{uint64_t prev_tsc = 0, cur_tsc, diff_tsc;unsigned lcore_id;lcore_id = rte_lcore_id();printf("Starting mainloop on core %u\n", lcore_id);while (1) {/** Call the timer handler on each core: as we don't* need a very precise timer, so only call* rte_timer_manage() every ~10ms (at 2Ghz). In a real* application, this will enhance performances as* reading the HPET timer is not efficient.*/cur_tsc = rte_rdtsc();diff_tsc = cur_tsc - prev_tsc;if (diff_tsc > TIMER_RESOLUTION_CYCLES) {rte_timer_manage();prev_tsc = cur_tsc;}}
}int main(int argc, char **argv)
{int ret;uint64_t hz;unsigned lcore_id;/* init EAL */ret = rte_eal_init(argc, argv);if (ret < 0)rte_panic("Cannot init EAL\n");/* init RTE timer library */rte_timer_subsystem_init();/* init timer structures */rte_timer_init(&timer0);rte_timer_init(&timer1);/* load timer0, every second, on master lcore, reloaded automatically *//* 每秒加载定时器0,绑定当前核心,自动加载 */hz = rte_get_timer_hz();lcore_id = rte_lcore_id();rte_timer_reset(&timer0, hz, PERIODICAL, lcore_id, timer0_cb, NULL);/* load timer1, every second/3, on next lcore, reloaded manually *//* 每3秒加载定时器0,绑定下一个核心,手动加载 */lcore_id = rte_get_next_lcore(lcore_id, 0, 1);rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);/* call lcore_mainloop() on every slave lcore */RTE_LCORE_FOREACH_SLAVE(lcore_id) {rte_eal_remote_launch(lcore_mainloop, NULL, lcore_id);}/* call it on master lcore too */(void) lcore_mainloop(NULL);return 0;
}

3.2. 只使用 timer0

#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <errno.h>
#include <sys/queue.h>#include <rte_common.h>
#include <rte_memory.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_cycles.h>
#include <rte_timer.h>
#include <rte_debug.h>#define TIMER_RESOLUTION_CYCLES 20000000ULL /* around 10ms at 2 Ghz */static struct rte_timer timer0;/* timer0 callback */
static void timer0_cb(__attribute__((unused)) struct rte_timer *tim, __attribute__((unused)) void *arg)
{static unsigned counter = 0;unsigned lcore_id = rte_lcore_id();printf("%s() on lcore %u\n", __func__, lcore_id);/* this timer is automatically reloaded until we decide to* stop it, when counter reaches 20. */if ((counter ++) == 20)rte_timer_stop(tim);
}static __attribute__((noreturn)) int lcore_mainloop(__attribute__((unused)) void *arg)
{uint64_t prev_tsc = 0, cur_tsc, diff_tsc;unsigned lcore_id;lcore_id = rte_lcore_id();printf("Starting mainloop on core %u\n", lcore_id);while (1) {/** Call the timer handler on each core: as we don't* need a very precise timer, so only call* rte_timer_manage() every ~10ms (at 2Ghz). In a real* application, this will enhance performances as* reading the HPET timer is not efficient.*/cur_tsc = rte_rdtsc();diff_tsc = cur_tsc - prev_tsc;if (diff_tsc > TIMER_RESOLUTION_CYCLES) {rte_timer_manage();prev_tsc = cur_tsc;}}
}int main(int argc, char **argv)
{int ret;uint64_t hz;unsigned lcore_id;/* init EAL */ret = rte_eal_init(argc, argv);if (ret < 0)rte_panic("Cannot init EAL\n");/* init RTE timer library */rte_timer_subsystem_init();/* init timer structures */rte_timer_init(&timer0);/* load timer0, every second, on master lcore, reloaded automatically *//* 每秒加载定时器0,绑定当前核心,自动加载 */hz = rte_get_timer_hz();lcore_id = rte_lcore_id();rte_timer_reset(&timer0, hz, PERIODICAL, lcore_id, timer0_cb, NULL);/* call lcore_mainloop() on every slave lcore */RTE_LCORE_FOREACH_SLAVE(lcore_id) {rte_eal_remote_launch(lcore_mainloop, NULL, lcore_id);}/* call it on master lcore too */(void) lcore_mainloop(NULL);return 0;
}
EAL: Detected 8 lcore(s)
EAL: Detected 1 NUMA nodes
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
EAL: Selected IOVA mode 'PA'
EAL: Probing VFIO support...
EAL: VFIO support initialized
EAL: PCI device 0000:02:01.0 on NUMA socket -1
EAL:   Invalid NUMA socket, default to 0
EAL:   probe driver: 8086:100f net_e1000_em
EAL: PCI device 0000:02:06.0 on NUMA socket -1
EAL:   Invalid NUMA socket, default to 0
EAL:   probe driver: 8086:100f net_e1000_em
EAL: PCI device 0000:03:00.0 on NUMA socket -1
EAL:   Invalid NUMA socket, default to 0
EAL:   probe driver: 15ad:7b0 net_vmxnet3
EAL: PCI device 0000:0b:00.0 on NUMA socket -1
EAL:   Invalid NUMA socket, default to 0
EAL:   probe driver: 15ad:7b0 net_vmxnet3
Starting mainloop on core 1
Starting mainloop on core 2
Starting mainloop on core 3
Starting mainloop on core 4
Starting mainloop on core 7
Starting mainloop on core 0
Starting mainloop on core 5
Starting mainloop on core 6
timer0_cb() on lcore 0
timer0_cb() on lcore 0
timer0_cb() on lcore 0
timer0_cb() on lcore 0
timer0_cb() on lcore 0
timer0_cb() on lcore 0
timer0_cb() on lcore 0

3.3. 只使用 timer1

#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <errno.h>
#include <sys/queue.h>#include <rte_common.h>
#include <rte_memory.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_cycles.h>
#include <rte_timer.h>
#include <rte_debug.h>#define TIMER_RESOLUTION_CYCLES 20000000ULL /* around 10ms at 2 Ghz */static struct rte_timer timer1;/* timer1 callback */
static void timer1_cb(__attribute__((unused)) struct rte_timer *tim, __attribute__((unused)) void *arg)
{unsigned lcore_id = rte_lcore_id();uint64_t hz;printf("%s() on lcore %u\n", __func__, lcore_id);/* reload it on another lcore */hz = rte_get_timer_hz();lcore_id = rte_get_next_lcore(lcore_id, 0, 1);rte_timer_reset(tim, hz/3, SINGLE, lcore_id, timer1_cb, NULL);
}static __attribute__((noreturn)) int lcore_mainloop(__attribute__((unused)) void *arg)
{uint64_t prev_tsc = 0, cur_tsc, diff_tsc;unsigned lcore_id;lcore_id = rte_lcore_id();printf("Starting mainloop on core %u\n", lcore_id);while (1) {/** Call the timer handler on each core: as we don't* need a very precise timer, so only call* rte_timer_manage() every ~10ms (at 2Ghz). In a real* application, this will enhance performances as* reading the HPET timer is not efficient.*/cur_tsc = rte_rdtsc();diff_tsc = cur_tsc - prev_tsc;if (diff_tsc > TIMER_RESOLUTION_CYCLES) {rte_timer_manage();prev_tsc = cur_tsc;}}
}int main(int argc, char **argv)
{int ret;uint64_t hz;unsigned lcore_id;/* init EAL */ret = rte_eal_init(argc, argv);if (ret < 0)rte_panic("Cannot init EAL\n");/* init RTE timer library */rte_timer_subsystem_init();/* init timer structures */rte_timer_init(&timer1);hz = rte_get_timer_hz();lcore_id = rte_get_next_lcore(lcore_id, 0, 1);rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);/* call lcore_mainloop() on every slave lcore */RTE_LCORE_FOREACH_SLAVE(lcore_id) {rte_eal_remote_launch(lcore_mainloop, NULL, lcore_id);}/* call it on master lcore too */(void) lcore_mainloop(NULL);return 0;
}
EAL: Detected 8 lcore(s)
EAL: Detected 1 NUMA nodes
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
EAL: Selected IOVA mode 'PA'
EAL: Probing VFIO support...
EAL: VFIO support initialized
EAL: PCI device 0000:02:01.0 on NUMA socket -1
EAL:   Invalid NUMA socket, default to 0
EAL:   probe driver: 8086:100f net_e1000_em
EAL: PCI device 0000:02:06.0 on NUMA socket -1
EAL:   Invalid NUMA socket, default to 0
EAL:   probe driver: 8086:100f net_e1000_em
EAL: PCI device 0000:03:00.0 on NUMA socket -1
EAL:   Invalid NUMA socket, default to 0
EAL:   probe driver: 15ad:7b0 net_vmxnet3
EAL: PCI device 0000:0b:00.0 on NUMA socket -1
EAL:   Invalid NUMA socket, default to 0
EAL:   probe driver: 15ad:7b0 net_vmxnet3
Starting mainloop on core 1
Starting mainloop on core 3
Starting mainloop on core 4
Starting mainloop on core 5
Starting mainloop on core 2
Starting mainloop on core 6
Starting mainloop on core 7
Starting mainloop on core 0
timer1_cb() on lcore 1
timer1_cb() on lcore 2
timer1_cb() on lcore 3
timer1_cb() on lcore 4
timer1_cb() on lcore 5
timer1_cb() on lcore 6
timer1_cb() on lcore 7
timer1_cb() on lcore 0
timer1_cb() on lcore 1

这篇关于DPDK timer 解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930213

相关文章

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

利用Python和C++解析gltf文件的示例详解

《利用Python和C++解析gltf文件的示例详解》gltf,全称是GLTransmissionFormat,是一种开放的3D文件格式,Python和C++是两个非常强大的工具,下面我们就来看看如何... 目录什么是gltf文件选择语言的原因安装必要的库解析gltf文件的步骤1. 读取gltf文件2. 提

Java中的runnable 和 callable 区别解析

《Java中的runnable和callable区别解析》Runnable接口用于定义不需要返回结果的任务,而Callable接口可以返回结果并抛出异常,通常与Future结合使用,Runnab... 目录1. Runnable接口1.1 Runnable的定义1.2 Runnable的特点1.3 使用Ru

使用EasyExcel实现简单的Excel表格解析操作

《使用EasyExcel实现简单的Excel表格解析操作》:本文主要介绍如何使用EasyExcel完成简单的表格解析操作,同时实现了大量数据情况下数据的分次批量入库,并记录每条数据入库的状态,感兴... 目录前言固定模板及表数据格式的解析实现Excel模板内容对应的实体类实现AnalysisEventLis