基于windows api实现的共享锁/独占锁

2024-04-23 06:08
文章标签 实现 windows 共享 api 独占

本文主要是介绍基于windows api实现的共享锁/独占锁,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

众所周知,windows平台上实现线程同步,或者说资源的加锁与解锁的方法有内核事件、临界区、互斥量、信号量,甚至interlocked系列函数等多种手段。但是在日常的编程中,我们使用这些手段对 “多个线程同时对同一个资源进行读写” 的时候,在读写之前先要对资源假锁,读写完之后要对资源解锁。

设想这样一种情况,有一个ftp服务器,每天有很频繁的对这个ftp服务的文件进行下载,但是几乎好几天才会对这些文件进行更新。在我们每一次对文件下载的时候,读取文件的时候都要对文件进行加锁,以保证同时没有其他人对文件进行写入。但是这些加锁的行为,在99%的时候都是不会有人同时写入文件的,只有1%的情况下会有人同时也要写入文件。这样的话,我们多锁就大大的浪费了,而且你在加锁的同时,别人即使也只是读取文件,也需要等你先解锁。


解决这个问题的办法是,对文件的读取设置共享锁,多个线程可以同时读文件,不会互相阻塞。再设置独占锁,当要对文件进行写入的时候,加上独占锁,这样别的线程此时不能读也不能写。


windows提供了一个称为slim 的共享/独占锁来解决这个问题。但是呢,slim只在vista和window server 2008才支持。在之前的版本上没有支持。于是,我就w利用现有的线程同步手段,来模拟达到slim这一个共享/独占锁的功能,代码封装如下:



</pre><pre name="code" class="cpp">//共享和独占锁(读不锁,写锁),适用于资源的读的频率比写的频率高的情况
//共享锁: 大家都可以同时读,但是不能写。
//独占锁: 就是只有一个人独占使用,不管是读还是写
//规定:acquire和release必须成对出现,不支持嵌套以及互相嵌套
//缺点:需要对加锁过程本身进行临界区控制,会带来细微的性能损失
#ifdef __cplusplus
extern "C" {
#endif
struct SELock //Shared & Exclusive lock
{   RTL_CRITICAL_SECTION sec_shared,sec_exclusive; //对加锁代码本身进行临界区控制HANDLE exclusive_evt;HANDLE shared_evt;volatile long shared_count;
};//初始化一个SE锁
_inline void InitializeSELock(SELock *lock)
{InitializeCriticalSection(&lock->sec_shared);InitializeCriticalSection(&lock->sec_exclusive);lock->exclusive_evt = CreateEventW(NULL,TRUE,TRUE,NULL);lock->shared_evt = CreateEventW(NULL,TRUE,TRUE,NULL);lock->shared_count = 0;
}//清理一个SE锁
_inline void DeleteSELock(SELock *lock)
{    DeleteCriticalSection(&lock->sec_shared);DeleteCriticalSection(&lock->sec_exclusive);CloseHandle(lock->exclusive_evt);CloseHandle(lock->shared_evt);lock->shared_count = 0;
}//请求共享锁,用于读
_inline void AcquireSELockShared(SELock *lock)
{EnterCriticalSection(&lock->sec_exclusive);   EnterCriticalSection(&lock->sec_shared);     WaitForSingleObject(lock->exclusive_evt,INFINITE); //等待独占锁    ++lock->shared_count;if(lock->shared_count)ResetEvent(lock->shared_evt); //打开共享锁      LeaveCriticalSection(&lock->sec_shared);LeaveCriticalSection(&lock->sec_exclusive);
}//释放共享锁
_inline void ReleaseSELockShared(SELock *lock)
{EnterCriticalSection(&lock->sec_shared);    --lock->shared_count;    if(!lock->shared_count)SetEvent(lock->shared_evt); //关闭共享锁        LeaveCriticalSection(&lock->sec_shared);    
}//请求独占锁
_inline void AcquireSELockExclusive(SELock *lock)
{EnterCriticalSection(&lock->sec_exclusive);    WaitForSingleObject(lock->exclusive_evt,INFINITE); //等待独占锁WaitForSingleObject(lock->shared_evt,INFINITE); //等待共享锁ResetEvent(lock->exclusive_evt); //打开独占锁LeaveCriticalSection(&lock->sec_exclusive);
}//释放独占锁
_inline void ReleaseSELockExclusive(SELock *lock)
{SetEvent(lock->exclusive_evt); //关闭独占锁
}#ifdef __cplusplus
}
#endif


这篇关于基于windows api实现的共享锁/独占锁的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/927979

相关文章

AJAX请求上传下载进度监控实现方式

《AJAX请求上传下载进度监控实现方式》在日常Web开发中,AJAX(AsynchronousJavaScriptandXML)被广泛用于异步请求数据,而无需刷新整个页面,:本文主要介绍AJAX请... 目录1. 前言2. 基于XMLHttpRequest的进度监控2.1 基础版文件上传监控2.2 增强版多

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整