Python编曲实践(三):如何模拟“弯音轮”实现滑音和颤音效果

2024-04-23 02:32

本文主要是介绍Python编曲实践(三):如何模拟“弯音轮”实现滑音和颤音效果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

弯音轮,是在MIDI键盘或专业电子琴一旁安装的一个装置(如下图)。
弯音轮
通过前后拨动滚轮,可以实现弯音和颤音的效果。这对于追求特殊电音效果的作曲者来说是必不可少的,而这两个技巧也是吉他等乐器演奏时十分常用的技巧,故在编程中学会更加自然和协调的模拟弯音和颤音效果,是模拟吉他等乐器时必不可少的。

再谈Message

我们第一篇文章已经简单讲过Message类是MIDI编曲中最为重要的概念,地位和作用相当于人体的细胞。
再次参考 Mido官方文档中的Message Type章节 ,我们可以看到在所有的Message种类中有pitchwheel,它便是用于模拟弯音轮效果的一种消息类别,也是实现滑音和颤音的关键。
Pitchwheel类Message的基本格式如下:

Message('pitchwheel', pitch, time, channel)

其中time和channel的意义同之前相同,而pitch参数是一个区间为-8192到8192的整数,用于表示音高“弯曲”的程度,取正数时趋向于高音,取负数时趋向于低音。pitch取3000的时候效果是“弯曲”一个半音。
若要实现完整的滑音过程,我们还需要Aftertouch这个类型的Message类型,其基本格式如下:

Message('aftertouch', time, channel, ...)

这种Message是用于在音符按下且未结束的时候改变某些属性,比如音量和频道等,在此我们仅仅用它来维持我们的音高。

编程实现

我们的目标是通过Pitchwheel这一种Message类型实现两种效果——滑音和颤音,故我们对这两种效果分别编码,将相关的代码添加到改名后的 实践(一)的play_note函数——add_note函数中:

def add_note(note, length, track, base_num=0, delay=0, velocity=1.0, channel=0, pitch_type=0, tremble_setting=None, bend_setting=None):bpm = get_bpm(track)meta_time = 60 * 60 * 10 / bpmmajor_notes = [0, 2, 2, 1, 2, 2, 2, 1]base_note = 60if pitch_type == 0: # No Pitch Wheel Messagetrack.append(Message('note_on', note=base_note + base_num*12 + sum(major_notes[0:note]), velocity=round(64*velocity), time=round(delay*meta_time), channel=channel))track.append(Message('note_off', note=base_note + base_num*12 + sum(major_notes[0:note]), velocity=round(64*velocity), time=round(meta_time*length), channel=channel))elif pitch_type == 1: # Trembletry:pitch = tremble_setting['pitch']wheel_times = tremble_setting['wheel_times']track.append(Message('note_on', note=base_note + base_num * 12 + sum(major_notes[0:note]),velocity=round(64 * velocity),time=round(delay * meta_time), channel=channel))for i in range(wheel_times):track.append(Message('pitchwheel', pitch=pitch, time=round(meta_time * length / (2 * wheel_times)),channel=channel))track.append(Message('pitchwheel', pitch=0, time=0, channel=channel))track.append(Message('pitchwheel', pitch=-pitch, time=round(meta_time * length / (2 * wheel_times)),channel=channel))track.append(Message('pitchwheel', pitch=0, time=0, channel=channel))track.append(Message('note_off', note=base_note + base_num * 12 + sum(major_notes[0:note]),velocity=round(64 * velocity), time=0, channel=channel))except:print(traceback.format_exc())elif pitch_type == 2: # Bendtry:pitch = bend_setting['pitch']PASDA = bend_setting['PASDA'] # Prepare-Attack-Sustain-Decay-Aftermath (Taken the notion of ADSR)prepare_rate = PASDA[0] / sum(PASDA)attack_rate = PASDA[1] / sum(PASDA)sustain_rate = PASDA[2] / sum(PASDA)decay_rate = PASDA[3] / sum(PASDA)aftermath_rate = PASDA[4] / sum(PASDA)track.append(Message('note_on', note=base_note + base_num * 12 + sum(major_notes[0:note]),velocity=round(64 * velocity), time=round(delay * meta_time), channel=channel))track.append(Message('aftertouch', time=round(meta_time * length * prepare_rate), channel=channel))track.append(Message('pitchwheel', pitch=pitch, time=round(meta_time * length * attack_rate), channel=channel))track.append(Message('aftertouch', time=round(meta_time * length * sustain_rate), channel=channel))track.append(Message('pitchwheel', pitch=0, time=round(meta_time * length * decay_rate), channel=channel))track.append(Message('note_off', note=base_note + base_num * 12 + sum(major_notes[0:note]),velocity=round(64 * velocity), time=round(meta_time * length * aftermath_rate), channel=channel))except:print(traceback.format_exc())

根据pitch_type的值,我们将函数分为三部分:

  • pitch_type为0,代表没有附加效果,同之前的play_note效果一样。
  • pitch_type为1,代表添加颤音效果,即吉他中的揉弦。产生这一效果的两个参数pitch和wheel_time通过tremble_setting传入,分别表示颤音的幅度和颤音的次数。根据我的实践来看,一个全音符跟随3至4次颤音是比较自然的;而pitch的赋值也应适中,在1000左右比较合适,太小则看不出效果,太大则会跳动到另一个音符,很不自然。
  • pitch_type为2,代表滑音效果,即吉他中的推弦。由于这一效果的变化十分多样,故我参考电子合成音乐中的 ADSR(Attack Decay Sustain Release) 属性,自己设计了一个 PASDA(Prepare - Attack - Sustain - Decay - Aftermath) 属性,即 初始音 - 向目标音行进过程中 - 滑到目标音后保持 - 向初始音行进过程中 - 初始音,这样就可以比较好地表示滑音的属性了,可以参考下图来进行理解:
    pasda
    根据PASDA不同阶段所占比例的大小,我们就能很好地构建出心怡的滑音效果。
    之后我们就可以对原始的音乐进行改进:
def verse(track):add_note(1, 0.5, track)       # 小add_note(1, 0.5, track, pitch_type=2, bend_setting={'pitch': 6000, 'PASDA': [0.1, 0.3, 2, 0.3, 0]})       # 时add_note(1, 1.5, track, pitch_type=1, tremble_setting={'pitch': 800, 'wheel_times': 10})       # 候add_note(7, 0.25, track, -1)  # 妈add_note(6, 0.25, track, -1)  # 妈add_note(5, 0.5, track, -1, channel=1)  # 对add_note(2, 0.5, track, channel=1, pitch_type=2, bend_setting={'pitch': 6000, 'PASDA': [0.1, 0.8, 2, 0, 0]})      # 我add_note(3, 2, track, channel=1, pitch_type=1, tremble_setting={'pitch': 640, 'wheel_times': 8})        # 讲add_note(3, 0.5, track)           # 大add_note(3, 0.5, track, pitch_type=2, bend_setting={'pitch': 3000, 'PASDA': [0.1, 0.8, 2, 0.3, 0]})add_note(3, 1.5, track, pitch_type=1, tremble_setting={'pitch': 400, 'wheel_times': 6})           # 海add_note(2, 0.25, track)          # 就add_note(1, 0.25, track)          # 是add_note(6, 0.5, track, -1, channel=1)  # 我add_note(1, 0.5, track, channel=1, pitch_type=2, bend_setting={'pitch': 6000, 'PASDA': [0.2, 0.8, 2, 0, 0]})      # 故add_note(2, 2, track, channel=1, pitch_type=1, tremble_setting={'pitch': 600, 'wheel_times': 8})        # 乡add_note(7, 0.5, track, -1)  # 海add_note(1, 0.5, track)add_note(7, 1.5, track, -1, tremble_setting={'pitch': 500, 'wheel_times': 6})  # 边add_note(6, 0.25, track, -1)add_note(5, 0.25, track, -1)add_note(5, 0.5, track, -1, channel=1)  # 出add_note(1, 0.5, track, channel=1, pitch_type=2, bend_setting={'pitch': 6000, 'PASDA': [0.2, 1.5, 3, 0, 0]})add_note(2, 2, track, channel=1, pitch_type=1, tremble_setting={'pitch': 400, 'wheel_times': 8})        # 生add_note(3, 1.5, track, pitch_type=2, bend_setting={'pitch': 3000, 'PASDA': [0, 0.3, 3, 0, 0]})       # 海add_note(3, 0.5, track)       # 里add_note(1, 0.5, track, channel=1)       # 成add_note(6, 0.5, track, -1, channel=1)add_note(1, 3, track, channel=1, pitch_type=1, tremble_setting={'pitch': 800, 'wheel_times': 10})         # 长

完整代码见 Github

参考资料

  • MIDI Tutorial
  • ADSR - Wikipedia

这篇关于Python编曲实践(三):如何模拟“弯音轮”实现滑音和颤音效果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/927546

相关文章

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

将Java程序打包成EXE文件的实现方式

《将Java程序打包成EXE文件的实现方式》:本文主要介绍将Java程序打包成EXE文件的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录如何将Java程序编程打包成EXE文件1.准备Java程序2.生成JAR包3.选择并安装打包工具4.配置Launch4

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分