Python编曲实践(三):如何模拟“弯音轮”实现滑音和颤音效果

2024-04-23 02:32

本文主要是介绍Python编曲实践(三):如何模拟“弯音轮”实现滑音和颤音效果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

弯音轮,是在MIDI键盘或专业电子琴一旁安装的一个装置(如下图)。
弯音轮
通过前后拨动滚轮,可以实现弯音和颤音的效果。这对于追求特殊电音效果的作曲者来说是必不可少的,而这两个技巧也是吉他等乐器演奏时十分常用的技巧,故在编程中学会更加自然和协调的模拟弯音和颤音效果,是模拟吉他等乐器时必不可少的。

再谈Message

我们第一篇文章已经简单讲过Message类是MIDI编曲中最为重要的概念,地位和作用相当于人体的细胞。
再次参考 Mido官方文档中的Message Type章节 ,我们可以看到在所有的Message种类中有pitchwheel,它便是用于模拟弯音轮效果的一种消息类别,也是实现滑音和颤音的关键。
Pitchwheel类Message的基本格式如下:

Message('pitchwheel', pitch, time, channel)

其中time和channel的意义同之前相同,而pitch参数是一个区间为-8192到8192的整数,用于表示音高“弯曲”的程度,取正数时趋向于高音,取负数时趋向于低音。pitch取3000的时候效果是“弯曲”一个半音。
若要实现完整的滑音过程,我们还需要Aftertouch这个类型的Message类型,其基本格式如下:

Message('aftertouch', time, channel, ...)

这种Message是用于在音符按下且未结束的时候改变某些属性,比如音量和频道等,在此我们仅仅用它来维持我们的音高。

编程实现

我们的目标是通过Pitchwheel这一种Message类型实现两种效果——滑音和颤音,故我们对这两种效果分别编码,将相关的代码添加到改名后的 实践(一)的play_note函数——add_note函数中:

def add_note(note, length, track, base_num=0, delay=0, velocity=1.0, channel=0, pitch_type=0, tremble_setting=None, bend_setting=None):bpm = get_bpm(track)meta_time = 60 * 60 * 10 / bpmmajor_notes = [0, 2, 2, 1, 2, 2, 2, 1]base_note = 60if pitch_type == 0: # No Pitch Wheel Messagetrack.append(Message('note_on', note=base_note + base_num*12 + sum(major_notes[0:note]), velocity=round(64*velocity), time=round(delay*meta_time), channel=channel))track.append(Message('note_off', note=base_note + base_num*12 + sum(major_notes[0:note]), velocity=round(64*velocity), time=round(meta_time*length), channel=channel))elif pitch_type == 1: # Trembletry:pitch = tremble_setting['pitch']wheel_times = tremble_setting['wheel_times']track.append(Message('note_on', note=base_note + base_num * 12 + sum(major_notes[0:note]),velocity=round(64 * velocity),time=round(delay * meta_time), channel=channel))for i in range(wheel_times):track.append(Message('pitchwheel', pitch=pitch, time=round(meta_time * length / (2 * wheel_times)),channel=channel))track.append(Message('pitchwheel', pitch=0, time=0, channel=channel))track.append(Message('pitchwheel', pitch=-pitch, time=round(meta_time * length / (2 * wheel_times)),channel=channel))track.append(Message('pitchwheel', pitch=0, time=0, channel=channel))track.append(Message('note_off', note=base_note + base_num * 12 + sum(major_notes[0:note]),velocity=round(64 * velocity), time=0, channel=channel))except:print(traceback.format_exc())elif pitch_type == 2: # Bendtry:pitch = bend_setting['pitch']PASDA = bend_setting['PASDA'] # Prepare-Attack-Sustain-Decay-Aftermath (Taken the notion of ADSR)prepare_rate = PASDA[0] / sum(PASDA)attack_rate = PASDA[1] / sum(PASDA)sustain_rate = PASDA[2] / sum(PASDA)decay_rate = PASDA[3] / sum(PASDA)aftermath_rate = PASDA[4] / sum(PASDA)track.append(Message('note_on', note=base_note + base_num * 12 + sum(major_notes[0:note]),velocity=round(64 * velocity), time=round(delay * meta_time), channel=channel))track.append(Message('aftertouch', time=round(meta_time * length * prepare_rate), channel=channel))track.append(Message('pitchwheel', pitch=pitch, time=round(meta_time * length * attack_rate), channel=channel))track.append(Message('aftertouch', time=round(meta_time * length * sustain_rate), channel=channel))track.append(Message('pitchwheel', pitch=0, time=round(meta_time * length * decay_rate), channel=channel))track.append(Message('note_off', note=base_note + base_num * 12 + sum(major_notes[0:note]),velocity=round(64 * velocity), time=round(meta_time * length * aftermath_rate), channel=channel))except:print(traceback.format_exc())

根据pitch_type的值,我们将函数分为三部分:

  • pitch_type为0,代表没有附加效果,同之前的play_note效果一样。
  • pitch_type为1,代表添加颤音效果,即吉他中的揉弦。产生这一效果的两个参数pitch和wheel_time通过tremble_setting传入,分别表示颤音的幅度和颤音的次数。根据我的实践来看,一个全音符跟随3至4次颤音是比较自然的;而pitch的赋值也应适中,在1000左右比较合适,太小则看不出效果,太大则会跳动到另一个音符,很不自然。
  • pitch_type为2,代表滑音效果,即吉他中的推弦。由于这一效果的变化十分多样,故我参考电子合成音乐中的 ADSR(Attack Decay Sustain Release) 属性,自己设计了一个 PASDA(Prepare - Attack - Sustain - Decay - Aftermath) 属性,即 初始音 - 向目标音行进过程中 - 滑到目标音后保持 - 向初始音行进过程中 - 初始音,这样就可以比较好地表示滑音的属性了,可以参考下图来进行理解:
    pasda
    根据PASDA不同阶段所占比例的大小,我们就能很好地构建出心怡的滑音效果。
    之后我们就可以对原始的音乐进行改进:
def verse(track):add_note(1, 0.5, track)       # 小add_note(1, 0.5, track, pitch_type=2, bend_setting={'pitch': 6000, 'PASDA': [0.1, 0.3, 2, 0.3, 0]})       # 时add_note(1, 1.5, track, pitch_type=1, tremble_setting={'pitch': 800, 'wheel_times': 10})       # 候add_note(7, 0.25, track, -1)  # 妈add_note(6, 0.25, track, -1)  # 妈add_note(5, 0.5, track, -1, channel=1)  # 对add_note(2, 0.5, track, channel=1, pitch_type=2, bend_setting={'pitch': 6000, 'PASDA': [0.1, 0.8, 2, 0, 0]})      # 我add_note(3, 2, track, channel=1, pitch_type=1, tremble_setting={'pitch': 640, 'wheel_times': 8})        # 讲add_note(3, 0.5, track)           # 大add_note(3, 0.5, track, pitch_type=2, bend_setting={'pitch': 3000, 'PASDA': [0.1, 0.8, 2, 0.3, 0]})add_note(3, 1.5, track, pitch_type=1, tremble_setting={'pitch': 400, 'wheel_times': 6})           # 海add_note(2, 0.25, track)          # 就add_note(1, 0.25, track)          # 是add_note(6, 0.5, track, -1, channel=1)  # 我add_note(1, 0.5, track, channel=1, pitch_type=2, bend_setting={'pitch': 6000, 'PASDA': [0.2, 0.8, 2, 0, 0]})      # 故add_note(2, 2, track, channel=1, pitch_type=1, tremble_setting={'pitch': 600, 'wheel_times': 8})        # 乡add_note(7, 0.5, track, -1)  # 海add_note(1, 0.5, track)add_note(7, 1.5, track, -1, tremble_setting={'pitch': 500, 'wheel_times': 6})  # 边add_note(6, 0.25, track, -1)add_note(5, 0.25, track, -1)add_note(5, 0.5, track, -1, channel=1)  # 出add_note(1, 0.5, track, channel=1, pitch_type=2, bend_setting={'pitch': 6000, 'PASDA': [0.2, 1.5, 3, 0, 0]})add_note(2, 2, track, channel=1, pitch_type=1, tremble_setting={'pitch': 400, 'wheel_times': 8})        # 生add_note(3, 1.5, track, pitch_type=2, bend_setting={'pitch': 3000, 'PASDA': [0, 0.3, 3, 0, 0]})       # 海add_note(3, 0.5, track)       # 里add_note(1, 0.5, track, channel=1)       # 成add_note(6, 0.5, track, -1, channel=1)add_note(1, 3, track, channel=1, pitch_type=1, tremble_setting={'pitch': 800, 'wheel_times': 10})         # 长

完整代码见 Github

参考资料

  • MIDI Tutorial
  • ADSR - Wikipedia

这篇关于Python编曲实践(三):如何模拟“弯音轮”实现滑音和颤音效果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/927546

相关文章

基于Python开发PDF转PNG的可视化工具

《基于Python开发PDF转PNG的可视化工具》在数字文档处理领域,PDF到图像格式的转换是常见需求,本文介绍如何利用Python的PyMuPDF库和Tkinter框架开发一个带图形界面的PDF转P... 目录一、引言二、功能特性三、技术架构1. 技术栈组成2. 系统架构javascript设计3.效果图

Linux下修改hostname的三种实现方式

《Linux下修改hostname的三种实现方式》:本文主要介绍Linux下修改hostname的三种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下修改ho编程stname三种方式方法1:修改配置文件方法2:hFvEWEostnamectl命

Java实现数据库图片上传功能详解

《Java实现数据库图片上传功能详解》这篇文章主要为大家详细介绍了如何使用Java实现数据库图片上传功能,包含从数据库拿图片传递前端渲染,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、数据库搭建&nbsChina编程p; 3、后端实现将图片存储进数据库4、后端实现从数据库取出图片给前端5、前端拿到

Java实现将byte[]转换为File对象

《Java实现将byte[]转换为File对象》这篇文章将通过一个简单的例子为大家演示Java如何实现byte[]转换为File对象,并将其上传到外部服务器,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言1. 问题背景2. 环境准备3. 实现步骤3.1 从 URL 获取图片字节数据3.2 将字节数组

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

Nginx实现前端灰度发布

《Nginx实现前端灰度发布》灰度发布是一种重要的策略,它允许我们在不影响所有用户的情况下,逐步推出新功能或更新,通过灰度发布,我们可以测试新版本的稳定性和性能,下面就来介绍一下前端灰度发布的使用,感... 目录前言一、基于权重的流量分配二、基于 Cookie 的分流三、基于请求头的分流四、基于请求参数的分

Python如何在Word中生成多种不同类型的图表

《Python如何在Word中生成多种不同类型的图表》Word文档中插入图表不仅能直观呈现数据,还能提升文档的可读性和专业性,本文将介绍如何使用Python在Word文档中创建和自定义各种图表,需要的... 目录在Word中创建柱形图在Word中创建条形图在Word中创建折线图在Word中创建饼图在Word

Python Excel实现自动添加编号

《PythonExcel实现自动添加编号》这篇文章主要为大家详细介绍了如何使用Python在Excel中实现自动添加编号效果,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍简单的说,就是在Excel中有一列h=会有重复

Python FastAPI入门安装使用

《PythonFastAPI入门安装使用》FastAPI是一个现代、快速的PythonWeb框架,用于构建API,它基于Python3.6+的类型提示特性,使得代码更加简洁且易于绶护,这篇文章主要介... 目录第一节:FastAPI入门一、FastAPI框架介绍什么是ASGI服务(WSGI)二、FastAP

Python中Windows和macOS文件路径格式不一致的解决方法

《Python中Windows和macOS文件路径格式不一致的解决方法》在Python中,Windows和macOS的文件路径字符串格式不一致主要体现在路径分隔符上,这种差异可能导致跨平台代码在处理文... 目录方法 1:使用 os.path 模块方法 2:使用 pathlib 模块(推荐)方法 3:统一使