【python项目推荐】键盘监控--统计打字频率

2024-04-22 19:20

本文主要是介绍【python项目推荐】键盘监控--统计打字频率,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文:https://greptime.com/blogs/2024-03-19-keyboard-monitoring
代码:https://github.com/GreptimeTeam/demo-scene/tree/main/keyboard-monitor

项目简介

该项目实现了打字频率统计及可视化功能。
在这里插入图片描述

主要使用的库

pynput:允许您控制和监视输入设备。 这里我们用来获取键盘输入。
SQLAlchemy:数据库操作。 这里我们用来保存键盘输入。
streamlit:提供可视化界面。

项目组成

agent.py :获得键盘输入
display.py:可视化

补充说明

如果你不想用原文的数据库,也可以替换为本地的数据库,如免安装的sqlite

agent.py

# agent.py
from dotenv import load_dotenv
from pynput import keyboard
from pynput.keyboard import Keyimport concurrent.futures
import logging
import os
import queue
import sqlalchemy
import sqlalchemy.exc
import sys
import timeMODIFIERS = {Key.shift, Key.shift_l, Key.shift_r,Key.alt, Key.alt_l, Key.alt_r, Key.alt_gr,Key.ctrl, Key.ctrl_l, Key.ctrl_r,Key.cmd, Key.cmd_l, Key.cmd_r,
}TABLE = sqlalchemy.Table('keyboard_monitor',sqlalchemy.MetaData(),sqlalchemy.Column('hits', sqlalchemy.String),sqlalchemy.Column('ts', sqlalchemy.DateTime),
)if __name__ == '__main__':load_dotenv()log = logging.getLogger("agent")log.setLevel(logging.DEBUG)formatter = logging.Formatter('%(asctime)s %(levelname)s %(funcName)s %(message)s')file_handler = logging.FileHandler(f'agent-{time.time_ns()}.log', encoding='utf-8')file_handler.setLevel(logging.DEBUG)file_handler.setFormatter(formatter)stdout_handler = logging.StreamHandler(sys.stdout)stdout_handler.setLevel(logging.INFO)stdout_handler.setFormatter(formatter)log.addHandler(file_handler)log.addHandler(stdout_handler)#engine = sqlalchemy.create_engine(os.environ['DATABASE_URL'], #                                  echo_pool=True, #                                  isolation_level='AUTOCOMMIT')engine = sqlalchemy.create_engine("sqlite:///keyboard.db")current_modifiers = set()pending_hits = queue.Queue()cancel_signal = queue.Queue()def on_press(key):if key in MODIFIERS:current_modifiers.add(key)else:hits = sorted([ str(key) for key in current_modifiers ]) + [ str(key) ]hits = '+'.join(hits)pending_hits.put(hits)log.debug(f'{key} pressed, current_modifiers: {current_modifiers}')def on_release(key):if key in MODIFIERS:try:current_modifiers.remove(key)except KeyError:log.warning(f'Key {key} not in current_modifiers {current_modifiers}')log.debug(f'{key} released, current_modifiers: {current_modifiers}')#with engine.connect() as connection:#    connection.execute(sqlalchemy.sql.text("""#        CREATE TABLE IF NOT EXISTS keyboard_monitor (#            hits STRING NULL,#            ts TIMESTAMP(3) NOT NULL,#            TIME INDEX ("ts")#        ) ENGINE=mito WITH( regions = 1, ttl = '3months')#    """))# ...from sqlalchemy import create_engine, Table, Column, String, TIMESTAMP, MetaData, Indexmetadata = MetaData()keyboard_monitor = Table('keyboard_monitor', metadata,Column('hits', String, nullable=True),Column('ts', TIMESTAMP, nullable=False),)metadata.create_all(engine)def sender_thread():retries = 0while True:hits = pending_hits.get()log.debug(f'got: {hits}')if hits is None:log.info("Exiting...")breakwith engine.connect() as connection:try:log.debug(f'sending: {hits}')connection.execute(TABLE.insert().values(hits=hits, ts=sqlalchemy.func.now()))connection.commit()# ...log.info(f'sent: {hits}')retries = 0except sqlalchemy.exc.OperationalError as e:if retries >= 10:log.error(f'Retry exceeds. Operational error: {e}')pending_hits.put(hits)continueif e.connection_invalidated:log.warning(f'Connection invalidated: {e}')pending_hits.put(hits)continuemsg = str(e)if "(1815, 'Internal error: 1000')" in msg:# TODO 1815 - should not handle internal error;# see https://github.com/GreptimeTeam/greptimedb/issues/3447log.warning(f'Known operational error: {e}')pending_hits.put(hits)continueelif '2005' in msg and 'Unknown MySQL server host' in msg:log.warning(f'DNS temporary unresolved: {e}')pending_hits.put(hits)continueraise efinally:retries += 1def listener_thread():with keyboard.Listener(on_press=on_press, on_release=on_release) as listener:log.info("Listening...")cancel_signal.get()pending_hits.put(None)log.info("Exiting...")with concurrent.futures.ThreadPoolExecutor() as executor:sender = executor.submit(sender_thread)listener = executor.submit(listener_thread)try:f = concurrent.futures.wait([sender, listener], return_when=concurrent.futures.FIRST_EXCEPTION)for fut in f.done:log.error(f'Unhandled exception for futures: {fut.exception(timeout=0)}')except KeyboardInterrupt as e:log.info("KeyboardInterrupt. Exiting...")except Exception as e:log.error(f'Unhandled exception: {e}')finally:cancel_signal.put(True)

display.py

# display.py
import datetime
import os
from dotenv import load_dotenv
import pytz
import streamlit as st
import tzlocal
import pandasst.title("Keyboard Monitor")load_dotenv()
#conn = st.connection(
##    type="sql",
#    url="sqlite:///keyboard.db",
#)conn = st.connection('keyboard', type='sql', url="sqlite:///keyboard.db")df = conn.query("SELECT COUNT(*) AS total_hits FROM keyboard_monitor")
st.metric("Total hits", df.total_hits[0])most_frequent_key, most_frequent_combo = st.columns(2)
df = conn.query("""
SELECT hits, COUNT(*) as times
FROM keyboard_monitor
WHERE hits NOT LIKE '%+%'
GROUP BY hits
ORDER BY times DESC limit 1;
""")
most_frequent_key.metric("Most frequent key", df.hits[0])
df = conn.query("""
SELECT hits, COUNT(*) as times
FROM keyboard_monitor
WHERE hits LIKE '%+%'
GROUP BY hits
ORDER BY times DESC limit 1;
""")
most_frequent_combo.metric("Most frequent combo", df.hits[0])top_frequent_keys, top_frequent_combos = st.columns(2)
df = conn.query("""
SELECT hits, COUNT(*) as times
FROM keyboard_monitor
WHERE hits NOT LIKE '%+%'
GROUP BY hits
ORDER BY times DESC limit 10;
""")
top_frequent_keys.subheader("Top 10 keys")
top_frequent_keys.dataframe(df)
df = conn.query("""
SELECT hits, COUNT(*) as times
FROM keyboard_monitor
WHERE hits LIKE '%+%'
GROUP BY hits
ORDER BY times DESC limit 10;
""")
top_frequent_combos.subheader("Top 10 combos")
top_frequent_combos.dataframe(df)st.header("Find your inputs frequency of day")
local_tz = tzlocal.get_localzone()
hours = int(local_tz.utcoffset(datetime.datetime.now()).total_seconds() / 3600)
if hours > 0:offset = f" + INTERVAL '{hours} hours'"
elif hours < 0:offset = f" - INTERVAL '{hours} hours'"
else:offset = ''
d = st.date_input("Pick a day:", value=datetime.date.today())
query = f"""
SELECT ts,COUNT(1) AS times
FROM keyboard_monitor
WHERE strftime('%Y-%m-%d', ts, 'localtime') = '{d}'
GROUP BY strftime('%Y-%m-%d %H:00:00', ts)
ORDER BY ts ASC
LIMIT 10;
"""df = conn.query(query)
#print(df.keys())
df['ts'] = pandas.to_datetime(df['ts'])
df['ts'] = df['ts'].dt.tz_localize(pytz.utc).dt.tz_convert(local_tz)
st.dataframe(df)

这篇关于【python项目推荐】键盘监控--统计打字频率的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926644

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.