lock wait timeout exceeded处理

2024-04-22 08:58

本文主要是介绍lock wait timeout exceeded处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

select * from information_schema.innodb_trx;

kill 对应的线程

三个关于锁的表(MEMORY引擎);
innodb_trx ## 当前运行的所有事务
innodb_locks ## 当前出现的锁
innodb_lock_waits ## 锁等待的对应关系

root@127.0.0.1  :information_schema 13:28:38> desc innodb_locks;
+-------------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+---------------------+------+-----+---------+-------+
| lock_id | varchar(81) | NO | | | |#锁ID
| lock_trx_id | varchar(18) | NO | | | |#拥有锁的事务ID
| lock_mode | varchar(32) | NO | | | |#锁模式
| lock_type | varchar(32) | NO | | | |#锁类型
| lock_table | varchar(1024) | NO | | | |#被锁的表
| lock_index | varchar(1024) | YES | | NULL | |#被锁的索引
| lock_space | bigint(21) unsigned | YES | | NULL ||#被锁的表空间号
| lock_page | bigint(21) unsigned | YES | | NULL ||#被锁的页号
| lock_rec | bigint(21) unsigned | YES | | NULL ||#被锁的记录号
| lock_data | varchar(8192) | YES | | NULL | |#被锁的数据
+-------------+---------------------+------+-----+---------+-------+
10 rows in set (0.00 sec)

root@127.0.0.1  :information_schema 13:28:56> desc innodb_lock_waits;
+-------------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------------+-------------+------+-----+---------+-------+
| requesting_trx_id | varchar(18) | NO | | | |#请求锁的事务ID
| requested_lock_id | varchar(81) | NO | | | |#请求锁的锁ID
| blocking_trx_id | varchar(18) | NO | | | |#当前拥有锁的事务ID
| blocking_lock_id | varchar(81) | NO | | | |#当前拥有锁的锁ID
+-------------------+-------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

root@127.0.0.1  :information_schema 13:29:05> desc innodb_trx ;
+----------------------------+---------------------+------+-----+---------------------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------------------------+---------------------+------+-----+---------------------+-------+
| trx_id | varchar(18) | NO | | | |#事务ID
| trx_state | varchar(13) | NO | | | |#事务状态:
| trx_started | datetime | NO | | 0000-00-00 00:00:00 ||#事务开始时间;
| trx_requested_lock_id | varchar(81) | YES | | NULL ||#innodb_locks.lock_id
| trx_wait_started | datetime | YES | | NULL ||#事务开始等待的时间
| trx_weight | bigint(21) unsigned | NO | | 0 | |#
| trx_mysql_thread_id | bigint(21) unsigned | NO | | 0 ||#事务线程ID
| trx_query | varchar(1024) | YES | | NULL | |#具体SQL语句
| trx_operation_state | varchar(64) | YES | | NULL ||#事务当前操作状态
| trx_tables_in_use | bigint(21) unsigned | NO | | 0 ||#事务中有多少个表被使用
| trx_tables_locked | bigint(21) unsigned | NO | | 0 ||#事务拥有多少个锁
| trx_lock_structs | bigint(21) unsigned | NO | | 0 | |#
| trx_lock_memory_bytes | bigint(21) unsigned | NO | | 0 ||#事务锁住的内存大小(B)
| trx_rows_locked | bigint(21) unsigned | NO | | 0 ||#事务锁住的行数
| trx_rows_modified | bigint(21) unsigned | NO | | 0 ||#事务更改的行数
| trx_concurrency_tickets | bigint(21) unsigned | NO | | 0 ||#事务并发票数
| trx_isolation_level | varchar(16) | NO | | | |#事务隔离级别
| trx_unique_checks | int(1) | NO | | 0 | |#是否唯一性检查
| trx_foreign_key_checks | int(1) | NO | | 0 | |#是否外键检查
| trx_last_foreign_key_error | varchar(256) | YES | | NULL ||#最后的外键错误
| trx_adaptive_hash_latched | int(1) | NO | | 0 | |#
| trx_adaptive_hash_timeout | bigint(21) unsigned | NO | | 0 ||#

+----------------------------+---------------------+------+-----+---------------------+-------+



这篇关于lock wait timeout exceeded处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/925347

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

jenkins 插件执行shell命令时,提示“Command not found”处理方法

首先提示找不到“Command not found,可能我们第一反应是查看目标机器是否已支持该命令,不过如果相信能找到这里来的朋友估计遇到的跟我一样,其实目标机器是没有问题的通过一些远程工具执行shell命令是可以执行。奇怪的就是通过jenkinsSSH插件无法执行,经一番折腾各种搜索发现是jenkins没有加载/etc/profile导致。 【解决办法】: 需要在jenkins调用shell脚

linux 下Time_wait过多问题解决

转自:http://blog.csdn.net/jaylong35/article/details/6605077 问题起因: 自己开发了一个服务器和客户端,通过短连接的方式来进行通讯,由于过于频繁的创建连接,导致系统连接数量被占用,不能及时释放。看了一下18888,当时吓到了。 现象: 1、外部机器不能正常连接SSH 2、内向外不能够正常的ping通过,域名也不能正常解析。

明明的随机数处理问题分析与解决方案

明明的随机数处理问题分析与解决方案 引言问题描述解决方案数据结构设计具体步骤伪代码C语言实现详细解释读取输入去重操作排序操作输出结果复杂度分析 引言 明明生成了N个1到500之间的随机整数,我们需要对这些整数进行处理,删去重复的数字,然后进行排序并输出结果。本文将详细讲解如何通过算法、数据结构以及C语言来解决这个问题。我们将会使用数组和哈希表来实现去重操作,再利用排序算法对结果

8. 自然语言处理中的深度学习:从词向量到BERT

引言 深度学习在自然语言处理(NLP)领域的应用极大地推动了语言理解和生成技术的发展。通过从词向量到预训练模型(如BERT)的演进,NLP技术在机器翻译、情感分析、问答系统等任务中取得了显著成果。本篇博文将探讨深度学习在NLP中的核心技术,包括词向量、序列模型(如RNN、LSTM),以及BERT等预训练模型的崛起及其实际应用。 1. 词向量的生成与应用 词向量(Word Embedding)

使用协程实现高并发的I/O处理

文章目录 1. 协程简介1.1 什么是协程?1.2 协程的特点1.3 Python 中的协程 2. 协程的基本概念2.1 事件循环2.2 协程函数2.3 Future 对象 3. 使用协程实现高并发的 I/O 处理3.1 网络请求3.2 文件读写 4. 实际应用场景4.1 网络爬虫4.2 文件处理 5. 性能分析5.1 上下文切换开销5.2 I/O 等待时间 6. 最佳实践6.1 使用 as

Level3 — PART 3 — 自然语言处理与文本分析

目录 自然语言处理概要 分词与词性标注 N-Gram 分词 分词及词性标注的难点 法则式分词法 全切分 FMM和BMM Bi-direction MM 优缺点 统计式分词法 N-Gram概率模型 HMM概率模型 词性标注(Part-of-Speech Tagging) HMM 文本挖掘概要 信息检索(Information Retrieval) 全文扫描 关键词

PHP7扩展开发之数组处理

前言 这次,我们将演示如何在PHP扩展中如何对数组进行处理。要实现的PHP代码如下: <?phpfunction array_concat ($arr, $prefix) {foreach($arr as $key => $val) {if (isset($prefix[$key]) && is_string($val) && is_string($prefix[$key])) {$arr[