看了这篇博客我才知道我好像不太懂C和Cpp

2024-04-22 06:08

本文主要是介绍看了这篇博客我才知道我好像不太懂C和Cpp,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

博客出处:http://blog.csdn.net/metalseed/article/details/8045038
以下贴出极其变态的头文件…

#include <algorithm>  
#include <iostream>  
#include <iomanip>  
#include <sstream>  
#include <cstring>  
#include <cstdio>  
#include <string>  
#include <vector>  
#include <bitset>  
#include <queue>  
#include <stack>  
#include <cmath>  
#include <ctime>  
#include <list>  
#include <set>  
#include <map>  using namespace std;  #define REP(i, n) for (int i=0;i<int(n);++i)  
#define FOR(i, a, b) for (int i=int(a);i<int(b);++i)  
#define DWN(i, b, a) for (int i=int(b-1);i>=int(a);--i)  
#define REP_1(i, n) for (int i=1;i<=int(n);++i)  
#define FOR_1(i, a, b) for (int i=int(a);i<=int(b);++i)  
#define DWN_1(i, b, a) for (int i=int(b);i>=int(a);--i)  
#define REP_C(i, n) for (int n____=int(n),i=0;i<n____;++i)  
#define FOR_C(i, a, b) for (int b____=int(b),i=a;i<b____;++i)  
#define DWN_C(i, b, a) for (int a____=int(a),i=b-1;i>=a____;--i)  
#define REP_N(i, n) for (i=0;i<int(n);++i)  
#define FOR_N(i, a, b) for (i=int(a);i<int(b);++i)  
#define DWN_N(i, b, a) for (i=int(b-1);i>=int(a);--i)  
#define REP_1_C(i, n) for (int n____=int(n),i=1;i<=n____;++i)  
#define FOR_1_C(i, a, b) for (int b____=int(b),i=a;i<=b____;++i)  
#define DWN_1_C(i, b, a) for (int a____=int(a),i=b;i>=a____;--i)  
#define REP_1_N(i, n) for (i=1;i<=int(n);++i)  
#define FOR_1_N(i, a, b) for (i=int(a);i<=int(b);++i)  
#define DWN_1_N(i, b, a) for (i=int(b);i>=int(a);--i)  
#define REP_C_N(i, n) for (n____=int(n),i=0;i<n____;++i)  
#define FOR_C_N(i, a, b) for (b____=int(b),i=a;i<b____;++i)  
#define DWN_C_N(i, b, a) for (a____=int(a),i=b-1;i>=a____;--i)  
#define REP_1_C_N(i, n) for (n____=int(n),i=1;i<=n____;++i)  
#define FOR_1_C_N(i, a, b) for (b____=int(b),i=a;i<=b____;++i)  
#define DWN_1_C_N(i, b, a) for (a____=int(a),i=b;i>=a____;--i)  #define ECH(it, A) for (typeof(A.begin()) it=A.begin(); it != A.end(); ++it)  
#define DO(n) while(n--)  
#define DO_C(n) int n____ = n; while(n____--)  
#define TO(i, a, b) int s_=a<b?1:-1,b_=b+s_;for(int i=a;i!=b_;i+=s_)  
#define TO_1(i, a, b) int s_=a<b?1:-1,b_=b;for(int i=a;i!=b_;i+=s_)  
#define SQZ(i, j, a, b) for (int i=int(a),j=int(b)-1;i<j;++i,--j)  
#define SQZ_1(i, j, a, b) for (int i=int(a),j=int(b);i<=j;++i,--j)  
#define REP_2(i, j, n, m) REP(i, n) REP(j, m)  
#define REP_2_1(i, j, n, m) REP_1(i, n) REP_1(j, m)  #define ALL(A) A.begin(), A.end()  
#define LLA(A) A.rbegin(), A.rend()  
#define CPY(A, B) memcpy(A, B, sizeof(A))  
#define INS(A, P, B) A.insert(A.begin() + P, B)  
#define ERS(A, P) A.erase(A.begin() + P)  
#define BSC(A, X) find(ALL(A), X) // != A.end()  
#define CTN(T, x) (T.find(x) != T.end())  
#define SZ(A) int(A.size())  
#define PB push_back  
#define MP(A, B) make_pair(A, B)  #define Rush int T____; RD(T____); DO(T____)  
#pragma comment(linker, "/STACK:36777216")  
//#pragma GCC optimize ("O2")  
#define Ruby system("ruby main.rb")  
#define Haskell system("runghc main.hs")  
#define Pascal system("fpc main.pas")  typedef long long LL;  
typedef double DB;  
typedef unsigned UINT;  
typedef unsigned long long ULL;  typedef vector<int> VI;  
typedef vector<char> VC;  
typedef vector<string> VS;  
typedef vector<LL> VL;  
typedef vector<DB> VD;  
typedef set<int> SI;  
typedef set<string> SS;  
typedef set<LL> SL;  
typedef set<DB> SD;  
typedef map<int, int> MII;  
typedef map<string, int> MSI;  
typedef map<LL, int> MLI;  
typedef map<DB, int> MDI;  
typedef map<int, bool> MIB;  
typedef map<string, bool> MSB;  
typedef map<LL, bool> MLB;  
typedef map<DB, bool> MDB;  
typedef pair<int, int> PII;  
typedef pair<int, bool> PIB;  
typedef vector<PII> VII;  
typedef vector<VI> VVI;  
typedef vector<VII> VVII;  
typedef set<PII> SII;  
typedef map<PII, int> MPIII;  
typedef map<PII, bool> MPIIB;  /** I/O Accelerator **/  /* ... :" We are I/O Accelerator ... Use us at your own risk ;) ... " .. */  template<class T> inline void RD(T &);  
template<class T> inline void OT(const T &);  inline int RD(){ int x; RD(x); return x;}  
template<class T> inline T& _RD(T &x){ RD(x); return x;}  
inline void RC(char &c){scanf(" %c", &c);}  
inline void RS(char *s){scanf("%s", s);}  template<class T0, class T1> inline void RD(T0 &x0, T1 &x1){RD(x0), RD(x1);}  
template<class T0, class T1, class T2> inline void RD(T0 &x0, T1 &x1, T2 &x2){RD(x0), RD(x1), RD(x2);}  
template<class T0, class T1, class T2, class T3> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3){RD(x0), RD(x1), RD(x2), RD(x3);}  
template<class T0, class T1, class T2, class T3, class T4> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4);}  
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5);}  
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5), RD(x6);}  
template<class T0, class T1> inline void OT(T0 &x0, T1 &x1){OT(x0), OT(x1);}  
template<class T0, class T1, class T2> inline void OT(T0 &x0, T1 &x1, T2 &x2){OT(x0), OT(x1), OT(x2);}  
template<class T0, class T1, class T2, class T3> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3){OT(x0), OT(x1), OT(x2), OT(x3);}  
template<class T0, class T1, class T2, class T3, class T4> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4);}  
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5);}  
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5), OT(x6);}  template<class T> inline void RST(T &A){memset(A, 0, sizeof(A));}  
template<class T0, class T1> inline void RST(T0 &A0, T1 &A1){RST(A0), RST(A1);}  
template<class T0, class T1, class T2> inline void RST(T0 &A0, T1 &A1, T2 &A2){RST(A0), RST(A1), RST(A2);}  
template<class T0, class T1, class T2, class T3> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3){RST(A0), RST(A1), RST(A2), RST(A3);}  
template<class T0, class T1, class T2, class T3, class T4> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4);}  
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5);}  
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5), RST(A6);}  template<class T> inline void CLR(priority_queue<T, vector<T>, less<T> > &Q){  while (!Q.empty()) Q.pop();  
}  template<class T> inline void CLR(priority_queue<T, vector<T>, greater<T> > &Q){  while (!Q.empty()) Q.pop();  
}  template<class T> inline void CLR(T &A){A.clear();}  
template<class T0, class T1> inline void CLR(T0 &A0, T1 &A1){CLR(A0), CLR(A1);}  
template<class T0, class T1, class T2> inline void CLR(T0 &A0, T1 &A1, T2 &A2){CLR(A0), CLR(A1), CLR(A2);}  
template<class T0, class T1, class T2, class T3> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3){CLR(A0), CLR(A1), CLR(A2), CLR(A3);}  
template<class T0, class T1, class T2, class T3, class T4> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4);}  
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5);}  
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5), CLR(A6);}  
template<class T> inline void CLR(T &A, int n){REP(i, n) CLR(A[i]);}  
template<class T> inline void FLC(T &A, int x){memset(A, x, sizeof(A));}  
template<class T0, class T1> inline void FLC(T0 &A0, T1 &A1, int x){FLC(A0, x), FLC(A1, x);}  
template<class T0, class T1, class T2> inline void FLC(T0 &A0, T1 &A1, T2 &A2){FLC(A0), FLC(A1), FLC(A2);}  
template<class T0, class T1, class T2, class T3> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3){FLC(A0), FLC(A1), FLC(A2), FLC(A3);}  
template<class T0, class T1, class T2, class T3, class T4> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){FLC(A0), FLC(A1), FLC(A2), FLC(A3), FLC(A4);}  
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){FLC(A0), FLC(A1), FLC(A2), FLC(A3), FLC(A4), FLC(A5);}  
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){FLC(A0), FLC(A1), FLC(A2), FLC(A3), FLC(A4), FLC(A5), FLC(A6);}  template<class T> inline void SRT(T &A){sort(ALL(A));}  
template<class T, class C> inline void SRT(T &A, C B){sort(ALL(A), B);}  /** Add - On **/  const int MOD = 1000000007;  
const int INF = 1000000000;  
const DB EPS = 1e-2;  
const DB OO = 1e15;  
const DB PI = 3.14159265358979323846264; //M_PI;  // <<= ` 0. Daily Use .,  template<class T> inline void checkMin(T &a,const T b){if (b<a) a=b;}  
template<class T> inline void checkMax(T &a,const T b){if (b>a) a=b;}  
template <class T, class C> inline void checkMin(T& a, const T b, C c){if (c(b,a)) a = b;}  
template <class T, class C> inline void checkMax(T& a, const T b, C c){if (c(a,b)) a = b;}  
template<class T> inline T min(T a, T b, T c){return min(min(a, b), c);}  
template<class T> inline T max(T a, T b, T c){return max(max(a, b), c);}  
template<class T> inline T min(T a, T b, T c, T d){return min(min(a, b), min(c, d));}  
template<class T> inline T max(T a, T b, T c, T d){return max(min(a, b), max(c, d));}  
template<class T> inline T sqr(T a){return a*a;}  
template<class T> inline T cub(T a){return a*a*a;}  
int Ceil(int x, int y){return (x - 1) / y + 1;}  // <<= ` 1. Bitwise Operation .,  
inline bool _1(int x, int i){return x & 1<<i;}  
inline bool _1(LL x, int i){return x & 1LL<<i;}  
inline LL _1(int i){return 1LL<<i;}  
//inline int _1(int i){return 1<<i;}  
inline LL _U(int i){return _1(i) - 1;};  
//inline int _U(int i){return _1(i) - 1;};  template<class T> inline T low_bit(T x) {  return x & -x;  
}  template<class T> inline T high_bit(T x) {  T p = low_bit(x);  while (p != x) x -= p, p = low_bit(x);  return p;  
}  inline int count_bits(int x){  x = (x & 0x55555555) + ((x & 0xaaaaaaaa) >> 1);  x = (x & 0x33333333) + ((x & 0xcccccccc) >> 2);  x = (x & 0x0f0f0f0f) + ((x & 0xf0f0f0f0) >> 4);  x = (x & 0x00ff00ff) + ((x & 0xff00ff00) >> 8);  x = (x & 0x0000ffff) + ((x & 0xffff0000) >> 16);  return x;  
}  inline int count_bits(LL x){  x = (x & 0x5555555555555555LL) + ((x & 0xaaaaaaaaaaaaaaaaLL) >> 1);  x = (x & 0x3333333333333333LL) + ((x & 0xccccccccccccccccLL) >> 2);  x = (x & 0x0f0f0f0f0f0f0f0fLL) + ((x & 0xf0f0f0f0f0f0f0f0LL) >> 4);  x = (x & 0x00ff00ff00ff00ffLL) + ((x & 0xff00ff00ff00ff00LL) >> 8);  x = (x & 0x0000ffff0000ffffLL) + ((x & 0xffff0000ffff0000LL) >> 16);  x = (x & 0x00000000ffffffffLL) + ((x & 0xffffffff00000000LL) >> 32);  return x;  
}  int reverse_bits(int x){  x = ((x >> 1) & 0x55555555) | ((x << 1) & 0xaaaaaaaa);  x = ((x >> 2) & 0x33333333) | ((x << 2) & 0xcccccccc);  x = ((x >> 4) & 0x0f0f0f0f) | ((x << 4) & 0xf0f0f0f0);  x = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00);  x = ((x >>16) & 0x0000ffff) | ((x <<16) & 0xffff0000);  return x;  
}  LL reverse_bits(LL x){  x = ((x >> 1) & 0x5555555555555555LL) | ((x << 1) & 0xaaaaaaaaaaaaaaaaLL);  x = ((x >> 2) & 0x3333333333333333LL) | ((x << 2) & 0xccccccccccccccccLL);  x = ((x >> 4) & 0x0f0f0f0f0f0f0f0fLL) | ((x << 4) & 0xf0f0f0f0f0f0f0f0LL);  x = ((x >> 8) & 0x00ff00ff00ff00ffLL) | ((x << 8) & 0xff00ff00ff00ff00LL);  x = ((x >>16) & 0x0000ffff0000ffffLL) | ((x <<16) & 0xffff0000ffff0000LL);  x = ((x >>32) & 0x00000000ffffffffLL) | ((x <<32) & 0xffffffff00000000LL);  return x;  
}  // <<= ` 2. Modular Arithmetic Basic .,  inline void INC(int &a, int b){a += b; if (a >= MOD) a -= MOD;}  
inline int sum(int a, int b){a += b; if (a >= MOD) a -= MOD; return a;}  
inline void DEC(int &a, int b){a -= b; if (a < 0) a += MOD;}  
inline int dff(int a, int b){a -= b; if (a < 0) a  += MOD; return a;}  
inline void MUL(int &a, int b){a = (LL)a * b % MOD;}  
inline int pdt(int a, int b){return (LL)a * b % MOD;}  inline int pow(int a, int b){  int c = 1;  while (b) {  if (b&1) MUL(c, a);  MUL(a, a), b >>= 1;  }  return c;  
}  template<class T>  
inline int pow(T a, int b){  T c(1);  while (b) {  if (b&1) MUL(c, a);  MUL(a, a), b >>= 1;  }  return c;  
}  inline int _I(int b){  int a = MOD, x1 = 0, x2 = 1, q;  while (true){  q = a / b, a %= b;  if (!a) return (x2 + MOD) % MOD;  DEC(x1, pdt(q, x2));  q = b / a, b %= a;  if (!b) return (x1 + MOD) % MOD;  DEC(x2, pdt(q, x1));  }  
}  inline void DIV(int &a, int b){MUL(a, _I(b));}  
inline int qtt(int a, int b){return pdt(a, _I(b));}  inline int sum(int a, int b, int MOD){  a += b; if (a >= MOD) a -= MOD;  return a;  
}  inline int phi(int n){  int res = n;  for (int i=2;sqr(i)<=n;++i) if (!(n%i)){  DEC(res, qtt(res, i));  do{n /= i;} while(!(n%i));  }  if (n != 1)  DEC(res, qtt(res, n));  return res;  
}  // <<= '9. Comutational Geometry .,  struct Po; struct Line; struct Seg;  inline int sgn(DB x){return x < -EPS ? -1 : x > EPS;}  
inline int sgn(DB x, DB y){return sgn(x - y);}  struct Po{  DB x, y;  Po(DB _x = 0, DB _y = 0):x(_x), y(_y){}  friend istream& operator >>(istream& in, Po &p){return in >> p.x >> p.y;}  friend ostream& operator <<(ostream& out, Po p){return out << "(" << p.x << ", " << p.y << ")";}  friend bool operator ==(Po, Po);  friend bool operator !=(Po, Po);  friend Po operator +(Po, Po);  friend Po operator -(Po, Po);  friend Po operator *(Po, DB);  friend Po operator /(Po, DB);  bool operator < (const Po &rhs) const{return sgn(x, rhs.x) < 0 || sgn(x, rhs.x) == 0 && sgn(y, rhs.y) < 0;}  Po operator-() const{return Po(-x, -y);}  Po& operator +=(Po rhs){x += rhs.x, y += rhs.y; return *this;}  Po& operator -=(Po rhs){x -= rhs.x, y -= rhs.y; return *this;}  Po& operator *=(DB k){x *= k, y *= k; return *this;}  Po& operator /=(DB k){x /= k, y /= k; return *this;}  DB length_sqr(){return sqr(x) + sqr(y);}  DB length(){return sqrt(length_sqr());}  DB atan(){  return atan2(y, x);  }  void input(){  scanf("%lf %lf", &x, &y);  }  
};  bool operator ==(Po a, Po b){return sgn(a.x - b.x) == 0 && sgn(a.y - b.y) == 0;}  
bool operator !=(Po a, Po b){return sgn(a.x - b.x) != 0 || sgn(a.y - b.y) != 0;}  
Po operator +(Po a, Po b){return Po(a.x + b.x, a.y + b.y);}  
Po operator -(Po a, Po b){return Po(a.x - b.x, a.y - b.y);}  
Po operator *(Po a, DB k){return Po(a.x * k, a.y * k);}  
Po operator *(DB k, Po a){return a * k;}  
Po operator /(Po a, DB k){return Po(a.x / k, a.y / k);}  struct Line{  Po a, b;  Line(Po _a = Po(), Po _b = Po()):a(_a), b(_b){}  Line(DB x0, DB y0, DB x1, DB y1):a(Po(x0, y0)), b(Po(x1, y1)){}  Line(Seg);  friend ostream& operator <<(ostream& out, Line p){return out << p.a << "-" << p.b;}  
};  struct Seg{  Po a, b;  Seg(Po _a = Po(), Po _b = Po()):a(_a), b(_b){}  Seg(DB x0, DB y0, DB x1, DB y1):a(Po(x0, y0)), b(Po(x1, y1)){}  Seg(Line l);  friend ostream& operator <<(ostream& out, Seg p){return out << p.a << "-" << p.b;}  DB length(){return (b - a).length();}  
};  Line::Line(Seg l):a(l.a), b(l.b){}  
Seg::Seg(Line l):a(l.a), b(l.b){}  #define innerProduct dot  
#define scalarProduct dot  
#define dotProduct dot  
#define outerProduct det  
#define crossProduct det  inline DB dot(DB x1, DB y1, DB x2, DB y2){return x1 * x2 + y1 * y2;}  
inline DB dot(Po a, Po b){return dot(a.x, a.y, b.x, b.y);}  
inline DB dot(Po p0, Po p1, Po p2){return dot(p1 - p0, p2 - p0);}  
inline DB dot(Line l1, Line l2){return dot(l1.b - l1.a, l2.b - l2.a);}  
inline DB det(DB x1, DB y1, DB x2, DB y2){return x1 * y2 - x2 * y1;}  
inline DB det(Po a, Po b){return det(a.x, a.y, b.x, b.y);}  
inline DB det(Po p0, Po p1, Po p2){return det(p1 - p0, p2 - p0);}  
inline DB det(Line l1, Line l2){return det(l1.b - l1.a, l2.b - l2.a);}  template<class T1, class T2> inline DB dist(T1 x, T2 y){return sqrt(dist_sqr(x, y));}  inline DB dist_sqr(Po a, Po b){return sqr(a.x - b.x) + sqr(a.y - b.y);}  
inline DB dist_sqr(Po p, Line l){Po v0 = l.b - l.a, v1 = p - l.a; return sqr(fabs(det(v0, v1))) / v0.length_sqr();}  
inline DB dist_sqr(Po p, Seg l){  Po v0 = l.b - l.a, v1 = p - l.a, v2 = p - l.b;  if (sgn(dot(v0, v1)) * sgn(dot(v0, v2)) <= 0) return dist_sqr(p, Line(l));  else return min(v1.length_sqr(), v2.length_sqr());  
}  inline DB dist_sqr(Line l, Po p){return dist_sqr(p, l);}  
inline DB dist_sqr(Seg l, Po p){return dist_sqr(p, l);}  inline DB dist_sqr(Line l1, Line l2){  if (sgn(det(l1, l2)) != 0) return 0;  return dist_sqr(l1.a, l2);  
}  
inline DB dist_sqr(Line l1, Seg l2){  Po v0 = l1.b - l1.a, v1 = l2.a - l1.a, v2 = l2.b - l1.a; DB c1 = det(v0, v1), c2 = det(v0, v2);  return sgn(c1) != sgn(c2) ? 0 : sqr(min(fabs(c1), fabs(c2))) / v0.length_sqr();  
}  bool isIntersect(Seg l1, Seg l2){  //if (l1.a == l2.a || l1.a == l2.b || l1.b == l2.a || l1.b == l2.b) return true;  return  min(l1.a.x, l1.b.x) <= max(l2.a.x, l2.b.x) &&  min(l2.a.x, l2.b.x) <= max(l1.a.x, l1.b.x) &&  min(l1.a.y, l1.b.y) <= max(l2.a.y, l2.b.y) &&  min(l2.a.y, l2.b.y) <= max(l1.a.y, l1.b.y) &&  sgn( det(l1.a, l2.a, l2.b) ) * sgn( det(l1.b, l2.a, l2.b) ) <= 0 &&  sgn( det(l2.a, l1.a, l1.b) ) * sgn( det(l2.b, l1.a, l1.b) ) <= 0;  }  inline DB dist_sqr(Seg l1, Seg l2){  if (isIntersect(l1, l2)) return 0;  else return min(dist_sqr(l1.a, l2), dist_sqr(l1.b, l2), dist_sqr(l2.a, l1), dist_sqr(l2.b, l1));  
}  inline bool isOnExtremePoint(const Po &p, const Seg &l){  return p == l.a || p == l.b;  
}  inline bool isOnseg(const Po &p, const Seg &l){  //if (p == l.a || p == l.b) return false;  return sgn(det(p, l.a, l.b)) == 0 &&  sgn(l.a.x, p.x) * sgn(l.b.x, p.x) <= 0 && sgn(l.a.y, p.y) * sgn(l.b.y, p.y) <= 0;  
}  inline Po intersect(const Line &l1, const Line &l2){  return l1.a + (l1.b - l1.a) * (det(l2.a, l1.a, l2.b) / det(l2, l1));  
}  // perpendicular foot  
inline Po intersect(const Po & p, const Line &l){  return intersect(Line(p, p + Po(l.a.y - l.b.y, l.b.x - l.a.x)), l);  
}  inline Po rotate(Po p, DB alpha, Po o = Po()){  p.x -= o.x, p.y -= o .y;  return Po(p.x * cos(alpha) - p.y * sin(alpha), p.y * cos(alpha) + p.x * sin(alpha)) + o;  
}  // <<= ' A. Random Event ..  inline int rand32(){return (bool(rand() & 1) << 30) | (rand() << 15) + rand();}  
inline int random32(int l, int r){return rand32() % (r - l + 1) + l;}  
inline int random(int l, int r){return rand() % (r - l + 1) + l;}  
int dice(){return rand() % 6;}  
bool coin(){return rand() % 2;}  // <<= ' 0. I/O Accelerator interface .,  template<class T> inline void RD(T &x){  //cin >> x;  scanf("%d", &x);  //char c; for (c = getchar(); c < '0'; c = getchar()); x = c - '0'; for (c = getchar(); c >= '0'; c = getchar()) x = x * 10 + c - '0';  //char c; c = getchar(); x = c - '0'; for (c = getchar(); c >= '0'; c = getchar()) x = x * 10 + c - '0';  
}  template<class T> inline void OT(const T &x){  printf("%d\n", x);  
}  /* .................................................................................................................................. */  const int N = 50009, M = 10009;  const int NN = 2500009;  int l[NN], r[NN], c[NN], total;  PII A[N+M]; int B[N+M], Q[M][3];  
int S[N], C[N], Null;  
int n, m, An, Tn;  #define lx l[x]  
#define rx r[x]  
#define ly l[y]  
#define ry r[y]  
#define cx c[x]  
#define cy c[y]  #define mid ((ll+rr)>>1)  
#define lc lx, ll, mid  
#define rc rx, mid+1, rr  void Build(int &x, int ll, int rr){  x = ++total; if (ll < rr) Build(lc), Build(rc);  
}  int Insert(int y, int p, int d){  int x = ++total, root = x;  c[x] = c[y] + d; int ll = 0, rr = Tn;  while (ll < rr){  if (p <= mid){  lx = ++total, rx = ry;  x = lx, y = ly, rr = mid;  }  else {  lx = ly, rx = ++total;  x = rx, y = ry, ll = mid + 1;  }  c[x] = c[y] + d;  }  return root;  
}  struct Pack{  VI L;  inline Pack(){}  inline Pack(int x){L.PB(x);}  inline void operator += (int x){  L.PB(x);  }  inline operator int() const{  int res = 0; REP(i, SZ(L)) res += c[l[L[i]]];  return res;  }  void lt(){  REP(i, SZ(L)) L[i] = l[L[i]];  }  void rt(){  REP(i, SZ(L)) L[i] = r[L[i]];  }  };  void Modify(int x, int p, int d){  while (x <= n) C[x] = Insert(C[x], p, d), x += low_bit(x);  
}  Pack Query(int x){  Pack res; while (x) res += C[x], x ^= low_bit(x);  return res;  
}  int Query(int ll, int rr, int k){  --ll; Pack a = Query(rr), b = Query(ll), c = S[rr], d = S[ll];  int t; ll = 0, rr = Tn;  while (ll < rr){  if ((t = a - b + c - d) >= k){  a.lt(), b.lt(), c.lt(), d.lt();  rr = mid;  }  else {  a.rt(), b.rt(), c.rt(), d.rt();  k -= t, ll = mid + 1;  }  }  return ll;  
}  int main(){  #ifndef ONLINE_JUDGE  freopen("in.txt", "r", stdin);  //freopen("out.txt", "w", stdout);  
#endif  #define key first  
#define id second  RD(n, m); REP(i, n) A[i] = MP(RD(), i);  An = n; char cmd; REP(i, m){  RC(cmd); if(cmd == 'Q') RD(Q[i][0], Q[i][1], Q[i][2]);  else RD(Q[i][0]), Q[i][2] = 0, A[An++] = MP(RD(), An);  }  sort(A, A + An), B[A[0].id] = Tn = 0;  FOR(i, 1, An){  if(A[i].key != A[i-1].key) A[++Tn].key = A[i].key;  B[A[i].id] = Tn;  }  Build(Null, 0, Tn); REP_1(i, n) C[i] = Null;  S[0] = Null; REP(i, n){  S[i+1] = Insert(S[i], B[i], 1);  }  An = n;  REP(i, m) if (Q[i][2]){  OT(A[Query(Q[i][0], Q[i][1], Q[i][2])].key);  }else{  Modify(Q[i][0], B[Q[i][0]-1], -1);  Modify(Q[i][0], B[Q[i][0]-1] = B[An++], 1);  }  
}

这篇关于看了这篇博客我才知道我好像不太懂C和Cpp的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924979

相关文章

类模板中.h和.cpp的实现方法

一般类的声明和实现放在两个文件中,然后在使用该类的主程序代码中,包含相应的头文件".h"就可以了,但是,模板类必须包含该其实现的.cpp文件才行。也就是说,在你的主程序中,将 #include"DouCirLList.h" 替换成 #include"DouCirLList.cpp" 应该就可以了。 在使用类模板技术时,可在.h中实现,也可在.h和.cpp中分开实现,若用.h实

搜狗浏览器打开CSDN博客排版错乱问题解决

之前发生过几次,不知道什么原因。 今天一直用着好好的,打开一个csdn连接,显示404,博文被删除了,于是就用百度快照打开试试,百度快照打开显示的排版很乱也没找到有用信息。 后面再浏览CSDN博客就排版错乱,显示一个大大二维码图片。 尝试删除IE缓存无效,使用谷歌浏览是好的。 基本锁定就是搜狗缓存导致的,于是找如何删除搜狗缓存   清除后恢复正常

CPP中的hash [more cpp-7]

写在前面 hash 在英文中是弄乱的含义。在编程中,hash是一种数据技术,它把任意类型的数据通过算法,生成一串数字(hash code),实现hash的函数称为哈希函数,又称散列函数,杂凑函数。在CPP中hashcode是一个size_t类型的数字。 你可能会问?把数据弄乱有什么用?为什么我们要把数据映射到一串数字上?这又什么意义吗?我们先看看hash的性质 一般hash性质 唯一性(唯

[情商-13]:语言的艺术:何为真实和真相,所谓真相,就是别人想让你知道的真相!洞察谎言与真相!

目录 前言: 一、说话的真实程度分级 二、说谎动机分级:善意谎言、中性谎言、恶意谎言 三、小心:所谓真相:只说对自己有利的真相 四、小心:所谓真相:就是别人想让你知道的真相 五、小心:所谓善解人意:就是别人只说你想要听到的话 前言: 何为真实和真相,所谓真相,就是别人想让你知道的真相!洞察谎言与真相! 人与人交流话语中,处处充满了不真实,完全真实的只是其中一小部分,这

828华为云征文|基于华为云Flexus云服务器X实例部搭建Halo博客平台

华为云征文|基于华为云Flexus云服务器X实例部搭建Halo博客平台 前言一、Flexus云服务器X实例介绍1.1 Flexus云服务器X实例简介1.2 Flexus云服务器X实例特点1.3 Flexus云服务器X实例使用场景 二、Halo介绍2.1 Halo 简介2.2 Halo 特点 三、本次实践介绍3.1 本次实践简介3.2 本次环境规划 四、购买华为云Flexus云服务器X实例4.

缓存的常见问题 以及解决博客文章

1.jedispool 连 redis 高并发卡死  (子非鱼yy) https://blog.csdn.net/ztx114/article/details/78291734 2. Redis安装及主从配置 https://blog.csdn.net/ztx114/article/details/78320193 3.Spring中使用RedisTemplate操作Redis(sprin

看病要排队这个是地球人都知道的常识

归纳编程学习的感悟, 记录奋斗路上的点滴, 希望能帮到一样刻苦的你! 如有不足欢迎指正! 共同学习交流! 🌎欢迎各位→点赞 👍+ 收藏⭐ + 留言​📝唯有付出,才有丰富的果实收获! 看病要排队这个是地球人都知道的常识。 不过经过细心的0068的观察,他发现了医院里排队还是有讲究的。0068所去的医院有三个医生(汗,这么少)同时看病。而看病的人病情有轻重,所以不能根据简单的先来

纳米材料咋设计?蛋白质模块咋用?看这里就知道啦!

大家好,今天我们来了解一项关于蛋白质纳米材料设计的研究——《Blueprinting extendable nanomaterials with standardized protein blocks》发表于《Nature》。蛋白质结构复杂,其组装体的设计颇具挑战。但近期的研究取得了新突破,通过设计标准化的蛋白质模块,如线性、曲线和转角模块等,实现了纳米材料的可扩展性和规律性。这

【最新华为OD机试E卷-支持在线评测】机器人活动区域(100分)多语言题解-(Python/C/JavaScript/Java/Cpp)

🍭 大家好这里是春秋招笔试突围 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-E/D卷的三语言AC题解 💻 ACM金牌🏅️团队| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 🍿 最新华为OD机试D卷目录,全、新、准,题目覆盖率达 95% 以上,支持题目在线评测,专栏文章质量平均 94 分 最新华为OD机试目录: https://blog.

[置顶] IT牛人博客

团队技术博客 淘宝UED淘宝用户体验团队淘宝核心系统淘宝核心系统团队博客阿里巴巴数据库团队专注数据库管理开发运维淘宝通用产品专注JAVA技术淘宝QA致力于做测试的行业标准淘宝搜索技术关注技术 关注搜索量子恒道专注大数据统计百度搜索研发关注搜索相关技术EMC中国研究院关注于云计算和大数据贰号楼肆层阿里巴巴平台技术部阿里数据平台阿里巴巴数据平台百度技术分享交流百度的互联网技术编码者说腾讯滴技术团队腾