POJ 3126 *** Prime Path

2024-04-22 00:08
文章标签 path poj prime 3126

本文主要是介绍POJ 3126 *** Prime Path,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意:给两个1000-9999内的素数A,B,每次改变A的一个位上的数字,得到后的数字必须为素数。问最少需要多少步才能得到B。

想法:对于A而言每次改变一个数字,那么用bfs遍历对A而言所有可能的状态同时判断是否为素数就可以了。

代码如下:

#pragma warning(disable:4996)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<stack>
#include<queue>
#include<cstring>
#include<sstream>
#include<set>
#include<string>
#include<iterator>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
typedef long long ll;int prime[10000];
int flag[10000];
int base[4] = { 1,10,100,1000 };int main(void) {//获得素数memset(prime, 1, sizeof(prime));for (int i = 2; i < 10000; ++i) {if (prime[i])for (int k = 2; k < 10010 / i; ++k)prime[i * k] = 0;}int n, ori, tar;cin >> n;while (n--) {cin >> ori >> tar;//如果ori==tar,直接输出结果if (ori == tar) {cout << 0 << endl;continue;}//如果ori!=tar,按以下方式处理memset(flag, 0, sizeof(flag));flag[ori] = 1;queue<int> path;path.push(ori);int now, temp, sign = 1;while (!path.empty()&&sign) {now = path.front();path.pop();int o[4];o[0] = now % 10, o[1] = now % 100 / 10;o[2] = now % 1000 / 100, o[3] = now / 1000;for (int i = 0; i < 4&&sign; ++i)for (int j = 0; j < 10&&sign; ++j) {temp = now - o[i] * base[i] + j*base[i];if (temp == tar) {flag[tar] = flag[now];sign = 0;break;}if (!flag[temp] && prime[temp] && temp>1000) {flag[temp] = flag[now] + 1;path.push(temp);}}}if (flag[tar])cout << flag[tar] << endl;else cout << "Impossible" << endl;}return 0;
}

这篇关于POJ 3126 *** Prime Path的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924381

相关文章

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

poj 1502 MPI Maelstrom(单源最短路dijkstra)

题目真是长得头疼,好多生词,给跪。 没啥好说的,英语大水逼。 借助字典尝试翻译了一下,水逼直译求不喷 Description: BIT他们的超级计算机最近交货了。(定语秀了一堆词汇那就省略吧再见) Valentine McKee的研究顾问Jack Swigert,要她来测试一下这个系统。 Valentine告诉Swigert:“因为阿波罗是一个分布式共享内存的机器,所以它的内存访问

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一