【MIT6.S081】Lab4: traps(详细解答版)

2024-04-21 17:28
文章标签 详细 解答 s081 mit6 traps lab4

本文主要是介绍【MIT6.S081】Lab4: traps(详细解答版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实验内容网址:https://xv6.dgs.zone/labs/requirements/lab4.html
本实验的代码分支:https://gitee.com/dragonlalala/xv6-labs-2020/tree/traps2/

Backtrace

关键点:trapframe、栈

思路:

这道题的关键是栈结构,先阅读xv6中关于栈的知识(https://mit-public-courses-cn-translatio.gitbook.io/mit6-s081/lec05-calling-conventions-and-stack-frames-risc-v/5.5-stack)。
[图片]

阅读链接的资料,我们可以知道,

  1. 每调用一个函数,函数都会为自己创建一个Stack Frame。
  2. 栈是从高地址开始向低地址使用。所以栈总是向下增长。
  3. Return address总是会出现在Stack Frame的第一位,指向前一个Stack Frame的指针也会出现在栈中的固定位置
  4. 第一个寄存器是SP(Stack Pointer),它指向Stack的底部并代表了当前Stack Frame的位置。第二个寄存器是FP(Frame Pointer),它指向当前Stack Frame的顶部。FP-8位是返回地址,FP-16位是上一个stack frame的fp地址。
  5. 保存前一个Stack Frame的指针的原因是为了让我们能跳转回去。
    XV6在内核中以页面对齐的地址为每个栈分配一个页面。你可以通过PGROUNDDOWN(fp)和PGROUNDUP(fp)(参见kernel/riscv.h)来计算栈页面的顶部和底部地址。

步骤&代码:

  1. 将下面的函数添加到kernel/riscv.h
static inline uint64
r_fp()
{uint64 x;asm volatile("mv %0, s0" : "=r" (x) );return x;
}
  1. 在kernel/defs.h中添加backtrace的原型,在printf.c中定义backtrace函数。
void       
backtrace(void){// 读取当前Frame Pointeruint64 fp = r_fp();while(PGROUNDUP(fp) - PGROUNDDOWN(fp) == PGSIZE){// 返回地址保存在-8偏移的位置uint64 ret_addr = *(uint64*)(fp-8);printf("%p\n",ret_addr);// 前一个帧指针保存在-16偏移的位置fp = *(uint64*)(fp-16);}
}
  1. 在sys_sleep中添加对backtrace函数的调用。
uint64
sys_sleep(void)
{int n;uint ticks0;if(argint(0, &n) < 0)return -1;acquire(&tickslock);ticks0 = ticks;while(ticks - ticks0 < n){if(myproc()->killed){release(&tickslock);return -1;}sleep(&ticks, &tickslock);}release(&tickslock);backtrace();// 新添加return 0;
}

未解:

这里说的stack是存放在用户页表中的吗

Alarm

关键点:从用户空间陷入陷阱、epc寄存器、trapframe

思路:(参考自https://xv6.dgs.zone/labs/answers/lab4.html)

这项练习要实现定期的警报。首先是要通过test0,如何调用处理程序是主要的问题。程序计数器的过程是这样的:

  1. ecall指令中将PC保存到SEPC
  2. 在usertrap中将SEPC保存到p->trapframe->epc
  3. p->trapframe->epc加4指向下一条指令
  4. 执行系统调用
  5. 在usertrapret中将SEPC改写为p->trapframe->epc中的值
  6. 在sret中将PC设置为SEPC的值
    可见执行系统调用后返回到用户空间继续执行的指令地址是由p->trapframe->epc决定的,因此在usertrap中主要就是完成它的设置工作。
    接下来要通过test1和test2,要解决的主要问题是寄存器保存恢复和防止重复执行的问题。考虑一下没有alarm时运行的大致过程
  7. 进入内核空间,保存用户寄存器到进程陷阱帧
  8. 陷阱处理过程
  9. 恢复用户寄存器,返回用户空间
    而当添加了alarm后,变成了以下过程
  10. 进入内核空间,保存用户寄存器到进程陷阱帧
  11. 陷阱处理过程
  12. 恢复用户寄存器,返回用户空间,但此时返回的并不是进入陷阱时的程序地址,而是处理函数handler的地址,而handler可能会改变用户寄存器
    因此我们要在usertrap中再次保存用户寄存器,当handler调用sigreturn时将其恢复,并且要防止在handler执行过程中重复调用。
    步骤&代码:
    根据题目的提示进行编程
  13. 需要修改Makefile以使alarmtest.c被编译为xv6用户程序。
UPROGS=\
...$U/_zombie\$U/_alarmtest\
  1. 在user/user.h中放入函数声明:
int sigalarm(int ticks, void (*handler)());
int sigreturn(void);
  1. 更新user/usys.pl(此文件生成user/usys.S)、kernel/syscall.h和kernel/syscall.c以允许alarmtest调用sigalarm和sigreturn系统调用。
# user/usys.pl文件中
...
entry("sleep");
entry("uptime");
entry("sigalarm");
entry("sigreturn");// syscall.h文件添加
#define SYS_sigalarm  22
#define SYS_sigreturn  23// syscall.c文件中
... 
extern uint64 sys_uptime(void);
extern uint64 sys_sigalarm(void);// 新添加
extern uint64 sys_sigreturn(void);// 新添加... 
[SYS_mkdir]   sys_mkdir,
[SYS_close]   sys_close,
[SYS_sigalarm]   sys_sigalarm,// 新添加
[SYS_sigreturn]   sys_sigreturn,// 新添加
...
  1. 在sysproc.c文件中添加函数
// 新添加
uint64 sys_sigalarm(void){return 0;
}
uint64 sys_sigreturn(void){return 0;
}
  1. 根据提示在struct proc 的定义中添加新字段,分别代表报警间隔,指向处理程序函数的指针,用于跟踪自上次调用到进程的报警处理程序间经历了多少滴答。
 int alarm_interval;           // 报警间隔void (*alarm_handle);           // 报警处理函数int last_tick_time;           // 上次报警的滴答时刻
  1. 初始化进程时初始化上面的三个新参数。
// 在allocproc函数中添加...memset(&p->context, 0, sizeof(p->context));p->context.ra = (uint64)forkret;p->context.sp = p->kstack + PGSIZE;p->alarm_handle = 0;p->alarm_interval = 0;p->last_tick_time = 0;...
  1. 根据提示,每一个滴答声,硬件时钟就会强制一个中断,这个中断在kernel/trap.c中的usertrap()中处理。因此在usertrap()中添加如下代码
// give up the CPU if this is a timer interrupt.if(which_dev == 2){// 获取当前的时钟数int xticks;acquire(&tickslock);xticks = ticks;release(&tickslock);if(xticks - p->last_tick_time >= p->alarm_interval && p->alarm_interval != 0 && p->alarm_handle != 0 ){// 调用处理函数p->trapframe->epc = (uint64)p->alarm_handle;// 更新上次的时钟p->last_tick_time = xticks;}yield();}

上面这个代码中获取时间的方式可能比较的弯弯绕绕。其实可以添加一个tick_count的字段,因为每次滴答中断都会进入这段代码,直接对这个变量进行累积即可。
8. 对sys_sigalarm函数进行编写,获得报警间隔和报警处理函数,并将值赋给新添加的字段

uint64 sys_sigalarm(void){int interval;uint64 handle;if(argint(0, &interval) < 0)return -1;if(argaddr(0, &handle) < 0)return -1;myproc()->alarm_interval = interval;myproc()->alarm_handle = (void *)handle;return 0;
}

上面8个步骤可以通过test0。但通不过test1 2,会出现panic。原因是执行完报警处理函数后返回用户空间,但此时返回的并不是进入陷阱时的程序地址,而是处理函数handler的地址,而handler可能会改变用户寄存器。必须确保完成报警处理程序后返回到用户程序最初被计时器中断的指令执行。必须确保寄存器内容恢复到中断时的值,以便用户程序在报警后可以不受干扰地继续运行。
8. 为了实现备份寄存器与防止对处理程序的重复调用,在struct proc定义中添加2个新字段。

 struct trapframe *trapframe_copy; // data page for trampoline.S copyint is_alarming;      
  1. 初始化进程时对这两个字段进行初始化。在allocproc函数中添加如下代码:
 ...// Allocate a trapframe page.if((p->trapframe = (struct trapframe *)kalloc()) == 0){release(&p->lock);return 0;}// Allocate a trapframe page(copy).if((p->trapframe_copy = (struct trapframe *)kalloc()) == 0){release(&p->lock);return 0;}......p->alarm_interval = 0;p->last_tick_time = 0;p->is_alarming = 0;...
  1. 进程释放时也要对新增的trapframe进行释放,因为开辟了一页内存空间,需要释放,在freeproc函数中添加:
 if(p->trapframe)kfree((void*)p->trapframe);p->trapframe = 0;if(p->trapframe_copy)kfree((void*)p->trapframe_copy);p->trapframe_copy = 0;...
  1. 在usertrap函数中,进入报警处理函数前,需要备份一下trapframe。修改usertrap函数代码
// give up the CPU if this is a timer interrupt.if(which_dev == 2){// 获取当前的时钟数int xticks;acquire(&tickslock);xticks = ticks;release(&tickslock);if(xticks - p->last_tick_time >= p->alarm_interval && p->alarm_interval != 0 && p->alarm_handle != 0 && p->is_alarming == 0){// 设置为正处于报警程序p->is_alarming = 1;// 备份trapframememmove(p->trapframe_copy, p->trapframe, sizeof(struct trapframe)); // 调用处理函数p->trapframe->epc = (uint64)p->alarm_handle;// 更新上次的时钟p->last_tick_time = xticks;}yield();}
  1. 补充sys_sigreturn函数,这个函数是由测试程序调用的。在执行完报警处理函数后执行。使得trapframe中寄存器的值恢复成报警前的状态。
uint64 sys_sigreturn(void){// 还原寄存器memmove(myproc()->trapframe, myproc()->trapframe_copy, sizeof(struct trapframe));myproc()->is_alarming = 0;return 0;
}

这篇关于【MIT6.S081】Lab4: traps(详细解答版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/923639

相关文章

沁恒CH32在MounRiver Studio上环境配置以及使用详细教程

目录 1.  RISC-V简介 2.  CPU架构现状 3.  MounRiver Studio软件下载 4.  MounRiver Studio软件安装 5.  MounRiver Studio软件介绍 6.  创建工程 7.  编译代码 1.  RISC-V简介         RISC就是精简指令集计算机(Reduced Instruction SetCom

arduino ide安装详细步骤

​ 大家好,我是程序员小羊! 前言: Arduino IDE 是一个专为编程 Arduino 微控制器设计的集成开发环境,使用起来非常方便。下面将介绍如何在不同平台上安装 Arduino IDE 的详细步骤,包括 Windows、Mac 和 Linux 系统。 一、在 Windows 上安装 Arduino IDE 1. 下载 Arduino IDE 打开 Arduino 官网

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

多路转接之select(fd_set介绍,参数详细介绍),实现非阻塞式网络通信

目录 多路转接之select 引入 介绍 fd_set 函数原型 nfds readfds / writefds / exceptfds readfds  总结  fd_set操作接口  timeout timevalue 结构体 传入值 返回值 代码 注意点 -- 调用函数 select的参数填充  获取新连接 注意点 -- 通信时的调用函数 添加新fd到

【详细介绍一下GEE】

GEE(Google Earth Engine)是一个强大的云计算平台,它允许用户处理和分析大规模的地球科学数据集,如卫星图像、气候模型输出等。以下是对GEE用法的详细介绍: 一、平台访问与账户设置 访问GEE平台: 用户可以通过访问Google Earth Engine的官方网站来开始使用GEE。 创建账户: 用户需要注册并登录Google账户,然后申请访问GEE平台。申请过程可能需要提

专题二_滑动窗口_算法专题详细总结

目录 滑动窗口,引入: 滑动窗口,本质:就是同向双指针; 1.⻓度最⼩的⼦数组(medium) 1.解析:给我们一个数组nums,要我们找出最小子数组的和==target,首先想到的就是暴力解法 1)暴力: 2)优化,滑动窗口: 1.进窗口 2.出窗口 3.更新值 2.⽆重复字符的最⻓⼦串(medium) 1)仍然是暴力解法: 2)优化: 进窗口:hash[s[rig

单位权中误差 详细介绍

单位权中误差(Unit Weight Error, UWE)是用于描述测量数据不确定性的一个统计量,特别是在地理信息系统(GIS)、导航和定位系统中。它主要用于评估和比较不同测量系统或算法的精度。以下是对单位权中误差的详细介绍: 1. 基本概念 单位权中误差(UWE): 定义:单位权中误差表示每个观测值(测量值)在估算中的标准误差。它是误差的一个统计量,主要用于评估测量系统的精度。单位:通常

python内置模块datetime.time类详细介绍

​​​​​​​Python的datetime模块是一个强大的日期和时间处理库,它提供了多个类来处理日期和时间。主要包括几个功能类datetime.date、datetime.time、datetime.datetime、datetime.timedelta,datetime.timezone等。 ----------动动小手,非常感谢各位的点赞收藏和关注。----------- 使用datet

嵌入式技术的核心技术有哪些?请详细列举并解释每项技术的主要功能和应用场景。

嵌入式技术的核心技术包括处理器技术、IC技术和设计/验证技术。 1. 处理器技术    通用处理器:这类处理器适用于不同类型的应用,其主要特征是存储程序和通用的数据路径,使其能够处理各种计算任务。例如,在智能家居中,通用处理器可以用于控制和管理家庭设备,如灯光、空调和安全系统。    单用途处理器:这些处理器执行特定程序,如JPEG编解码器,专门用于视频信息的压缩或解压。在数字相机中,单用途

【Python篇】PyQt5 超详细教程——由入门到精通(终篇)

文章目录 PyQt5超详细教程前言第9部分:菜单栏、工具栏与状态栏9.1 什么是菜单栏、工具栏和状态栏9.2 创建一个简单的菜单栏示例 1:创建带有菜单栏的应用程序代码详解: 9.3 创建工具栏示例 2:创建带有工具栏的应用程序代码详解: 9.4 创建状态栏示例 3:创建带有状态栏的应用程序代码详解: 9.5 菜单栏、工具栏与状态栏的结合示例 4:完整的应用程序界面代码详解: 9.6 总结