万物皆可计算|下一个风口:近内存计算-1

2024-04-20 03:36
文章标签 计算 内存 万物 风口

本文主要是介绍万物皆可计算|下一个风口:近内存计算-1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传统的冯·诺依曼架构虽然广泛应用于各类计算系统,但其分离的数据存储与处理单元导致了数据传输瓶颈,特别是在处理内存密集型任务时,CPU或GPU需要频繁地从内存中读取数据进行运算,然后再将结果写回内存,这一过程涉及大量的数据传输和较高的延迟,成为制约系统性能提升的关键瓶颈。

图片

冯·诺依曼架构中目前还有一个很严重的问题叫做内存墙(Memory Wall),处理器速度(尤其是CPU)相对于主内存(如DRAM)访问速度的增长差距所造成的性能瓶颈现象。随着处理器性能不断提升,其处理数据的速度远超主内存的读写速度,导致处理器经常处于等待数据从内存加载到缓存或从缓存写回内存的状态,这种等待时间占用了大量原本可用于计算的时间,限制了整个系统的性能表现。简而言之,内存墙就是指处理器与内存之间的带宽和延迟不匹配导致的性能障碍。

图片

PIM(Processing-in-Memory)内存计算技术则是为解决内存墙问题而提出的一种计算范式。它将计算功能直接集成到内存模块内部或非常靠近内存的位置,使得数据处理能够在数据驻留的地方进行,而非在传统架构中先将数据从内存取出、经过较慢的总线传送到处理器、进行计算后再返回内存。

PIM的核心思想是“数据在哪里,计算就在哪里”。通过在内存芯片内部或紧邻内存的位置添加计算单元,可以大幅度减少甚至消除频繁的数据搬运过程。数据不再需要经过内存控制器、总线和各级缓存,而是直接在内存内部完成计算操作。这样,就消除了因数据传输产生的延迟和带宽压力,显著降低了处理器等待数据的时间。

图片

超大规模人工智能(AI)系统,以ChatGPT等为代表,凭借其仿人问答、对话、甚至创作音乐和编写计算机程序等能力,震撼全球。然而,在这神奇表象的背后,实则需要庞大的内存密集型数据计算支撑。针对AI系统对传统内存解决方案提出的指数级增长需求,三星已在其高带宽内存(HBM)中集成了一款专为AI设计的产品HBM-PIM(High Bandwidth Memory with Processing-in-Memory)。这项PIM(Processing-in-Memory)技术将计算功能直接集成到高带宽内存(HBM)芯片内部,实现了数据处理与存储的深度融合,减少数据迁移,通过将部分数据计算工作从处理器转移到内存本身,从而大幅提升AI加速器系统的能效比。

图片

在HBM堆栈的每个内存裸片(die)上集成可编程计算单元(PCU),这些计算单元能够直接在存储数据的位置执行特定类型的计算任务,如矩阵乘法、卷积等,这些都是人工智能和高性能计算中常见的操作。

图片

GPU+HBM组合中,计算主要发生在GPU的处理核心(如CUDA核心或Tensor Core),数据需要从HBM内存传输到GPU核心进行运算;而在HBM-PIM架构中,部分计算任务直接在内存芯片内部的PCU上完成,无需大量数据迁移。类似于CPU中的多核架构,PCU支持内存中的并行处理,使得多个计算任务能够在同一时间内在不同的内存位置同时执行,充分利用内存的并行访问能力,显著提升数据处理速度。三星官网有一个比较形象的视频,供大家参考:

💻内存也能计算?三星PIM技术让你惊叹不已!😮

由于计算发生在数据存储的地方,避免了传统架构中数据从内存到处理器之间的大规模数据迁移,减少了I/O带宽消耗和延迟。这种数据本地化(Data Locality)策略极大地提高了能效比,降低了整体系统的功耗。

HBM-PIM并非完全替代传统的CPU或GPU,而是与之协同工作。CPU/GPU负责发送指令和控制流,而大部分数据密集型计算任务由内存内的PCU处理。完成后,结果数据可以直接在内存内部进行整合或返回给主处理器进行进一步处理。

这篇关于万物皆可计算|下一个风口:近内存计算-1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/919197

相关文章

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

JVM内存调优原则及几种JVM内存调优方法

JVM内存调优原则及几种JVM内存调优方法 1、堆大小设置。 2、回收器选择。   1、在对JVM内存调优的时候不能只看操作系统级别Java进程所占用的内存,这个数值不能准确的反应堆内存的真实占用情况,因为GC过后这个值是不会变化的,因此内存调优的时候要更多地使用JDK提供的内存查看工具,比如JConsole和Java VisualVM。   2、对JVM内存的系统级的调优主要的目的是减少

JVM 常见异常及内存诊断

栈内存溢出 栈内存大小设置:-Xss size 默认除了window以外的所有操作系统默认情况大小为 1MB,window 的默认大小依赖于虚拟机内存。 栈帧过多导致栈内存溢出 下述示例代码,由于递归深度没有限制且没有设置出口,每次方法的调用都会产生一个栈帧导致了创建的栈帧过多,而导致内存溢出(StackOverflowError)。 示例代码: 运行结果: 栈帧过大导致栈内存

理解java虚拟机内存收集

学习《深入理解Java虚拟机》时个人的理解笔记 1、为什么要去了解垃圾收集和内存回收技术? 当需要排查各种内存溢出、内存泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就必须对这些“自动化”的技术实施必要的监控和调节。 2、“哲学三问”内存收集 what?when?how? 那些内存需要回收?什么时候回收?如何回收? 这是一个整体的问题,确定了什么状态的内存可以

计算数组的斜率,偏移,R2

模拟Excel中的R2的计算。         public bool fnCheckRear_R2(List<double[]> lRear, int iMinRear, int iMaxRear, ref double dR2)         {             bool bResult = true;             int n = 0;             dou