人脸识别之特征脸识别方法EigenFace

2024-04-20 02:38

本文主要是介绍人脸识别之特征脸识别方法EigenFace,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

人脸识别之特征脸方法(Eigenface)

zouxy09@qq.com

http://blog.csdn.net/zouxy09

 

      因为需要,花了一点时间写了下经典的基于特征脸(EigenFace)的人脸识别方法的Matlab代码。这里仅把该代码分享出来。其实,在较新版本的OpenCV中已经提供了FaceRecognizer这一个类,里面不仅包含了特征脸EigenFace,还有FisherFace和LBPHFace这三种人脸识别方法,有兴趣的可以参考OpenCV的API手册,里面都有很详细的使用例程了。

 

一、特征脸

      特征脸EigenFace从思想上其实挺简单。就相当于把人脸从像素空间变换到另一个空间,在另一个空间中做相似性的计算。这么说,其实图像识别的基本思想都是一样的,首先选择一个合适的子空间,将所有的图像变换到这个子空间上,然后再在这个子空间上衡量相似性或者进行分类学习。那为什么要变换到另一个空间呢?当然是为了更好的做识别或者分类了。那为什么变换到一个空间就好识别或者分类了呢?因为变换到另一个空间,同一个类别的图像会聚到一起,不同类别的图像会距离比较远,或者在原像素空间中不同类别的图像在分布上很难用个简单的线或者面把他们切分开,然后如果变换到另一个空间,就可以很好的把他们分开了。有时候,线性(分类器)就可以很容易的把他们分开了。那既然人类看起来同类的图像本来就是相似的,不同类的图像就不太相似,那为什么在原始的像素空间他们同类不会很近,不同类不会很远,或者他们为什么不好分开呢?因为图像各种因素的影响,包括光照、视角、背景和形状等等不同,会造成同一个目标的图像都存在很大的视觉信息上的不同。如下图所示。

       世界上没有存在任何两片完全相同的叶子,虽然他们都是叶子。万千世界,同一类事物都存在共性,也存在个性,这就是这个世界多彩的原因。那怎么办呢?很自然,只要在我们想要的粒度上把同一类目标的共性找出来就好了,而且这个共性最好和我们要区分的类是不一样的。什么叫我们想要的粒度?我理解和我们的任务相关的。例如我们要区分人和车,那人的共性就是有脸、有手、有脚等等。但如果我们要区分亚洲人和非洲人,那么亚洲人的共性就是黄色皮肤等等。可以试着想象,上帝把世界万物组织成一个树状结构,树的根就是万物之源,下一层可以分成生物和非生物,再下一层将生物分为……(囧,想象不到),直到最底层,万物,你我,为树的一片普通得再普通的叶子。树越往下,粒度越小,分类越细(哈哈,自己乱扯的)。停!废话多了点,跑题了,回到刚才的问题,重头戏来了,要变换到什么空间,才具备上述这种良好类内相似、类间区分的效果?到这,我就只能say sorry了。计算机视觉领域发展了几十年,就为了这一个问题倾注了无数研究者的智慧与心血。当然了,也诞生和孕育了很多经典和有效的解答。(个人理解,上述说的实际上就是特征提取)。从一开始的颜色特征(颜色直方图)、纹理特征(Harr、LBP、HOG、SIFT等)、形状特征等到视觉表达Bag of Words,再到特征学习Deep Learning,技术的发展总能带给人希望,曙光也越来越清晰,但路还很远,是不?      

       扯太多了,严重离题了。上面说到,特征脸EigenFace的思想是把人脸从像素空间变换到另一个空间,在另一个空间中做相似性的计算。EigenFace选择的空间变换方法是PCA,也就是大名鼎鼎的主成分分析。它广泛的被用于预处理中以消去样本特征维度之间的相关性。当然了,这里不是说这个。EigenFace方法利用PCA得到人脸分布的主要成分,具体实现是对训练集中所有人脸图像的协方差矩阵进行本征值分解,得对对应的本征向量,这些本征向量(特征向量)就是“特征脸”。每个特征向量或者特征脸相当于捕捉或者描述人脸之间的一种变化或者特性。这就意味着每个人脸都可以表示为这些特征脸的线性组合。实际上,空间变换就等同于“搞基”,原始像素空间的基就是单位“基”,经过PCA后空间就是以每一个特征脸或者特征向量为基,在这个空间(或者坐标轴)下,每个人脸就是一个点,这个点的坐标就是这个人脸在每个特征基下的投影坐标。哦噢,说得有点绕。

      下面就直接给出基于特征脸的人脸识别实现过程:

1)将训练集的每一个人脸图像都拉长一列,将他们组合在一起形成一个大矩阵A。假设每个人脸图像是MxM大小,那么拉成一列后每个人脸样本的维度就是d=MxM大小了。假设有N个人脸图像,那么样本矩阵A的维度就是dxN了。

2)将所有的N个人脸在对应维度上加起来,然后求个平均,就得到了一个“平均脸”。你把这个脸显示出来的话,还挺帅的哦。

3)将N个图像都减去那个平均脸图像,得到差值图像的数据矩阵Φ。

4)计算协方差矩阵C=ΦΦT。再对其进行特征值分解。就可以得到想要的特征向量(特征脸)了。

5)将训练集图像和测试集的图像都投影到这些特征向量上了,再对测试集的每个图像找到训练集中的最近邻或者k近邻啥的,进行分类即可。

      算法说明白了都是不明白的,所以还是得去看具体实现。因此,可以对照下面的代码来弄清楚这些步骤。

      另外,对于步骤4),涉及到求特征值分解。如果人脸的特征维度d很大,例如256x256的人脸图像,d就是65536了。那么协方差矩阵C的维度就是dxd=65536x65536。对这个大矩阵求解特征值分解是很费力的。那怎么办呢?如果人脸的样本不多,也就是N不大的话,我们可以通过求解C’=ΦTΦ矩阵来获得同样的特征向量。可以看到这个C’=ΦTΦ只有NxN的大小哦。如果N远远小于d的话,那么这个力气就省得很值了。那为什么求解C’=ΦTΦ矩阵的特征向量可以获得C=ΦΦT的特征向量?万众瞩目时刻,数学以完美舞姿登上舞台。证明如下:

      其中,ei是C’=ΦTΦ的第i个特征向量,vi是C=ΦΦT的第i个特征向量,由证明可以看到,vi=Φei。所以通过求解C’=ΦTΦ的特征值分解得到ei,再左乘Φ就得到C=ΦΦT的特征向量vi了。也就是我们想要的特征脸。

 

二、Matlab实现

      下面的代码主要是在著名的人脸识别数据库YaleB中进行实现。用的是裁切后的人脸数据库,可以点击CroppedYale下载。共有38个人的人脸,人脸是在不同的光照下采集的,每个人脸图像是32x32个像素。实验在每一个的人脸图像中随机取5个作为训练图像,剩下的作为测试图像。当然了,实际过程中这个过程需要重复多次,然后得到多次准确率的均值和方差才有参考意义,但下面的demo就不做这个处理了。计算相似性用的是欧氏距离,但编程实现的时候为了加速,用的是简化版,至于如何简化的,考验你的时候到了。

% Face recognition using eigenfacesclose all, clear, clc;%% 20 random splits
num_trainImg = 5;
showEigenfaces = true;%% load data
disp('loading data...');
dataDir = './CroppedYale';
datafile = 'Yale.mat';
if ~exist(datafile, 'file')readYaleDataset(dataDir, datafile);
end
load(datafile);%% Five images per class are randomly chosen as the training
%% dataset and remaining images are used as the test dataset
disp('get training and testing data...');
num_class = size(unique(labels), 2);
trainIdx = [];
testIdx = [];
for i=1:num_classlabel = find(labels == i);indice = randperm(numel(label));trainIdx = [trainIdx label(indice(1:num_trainImg))];testIdx = [testIdx label(indice(num_trainImg+1:end))];
end%% get train and test data
train_x = double(data(:, trainIdx));
train_y = labels(trainIdx);
test_x = double(data(:, testIdx));
test_y = labels(testIdx);%% computing eigenfaces using PCA
disp('computing eigenfaces...');
tic;
[num_dim, num_imgs] = size(train_x);   %% A: #dim x #images
avg_face = mean(train_x, 2); 			 %% computing the average face
X = bsxfun(@minus, train_x, avg_face); %% computing the difference images%% PCA
if num_dim <= num_imgs C = X * X';[V, D] = eig(C);
elseC = X' * X; [U, D] = eig(C);V = X * U;
end
eigenfaces = V;
eigenfaces = eigenfaces ./ (ones(size(eigenfaces,1),1) * sqrt(sum(eigenfaces.*eigenfaces)));
toc;%% visualize the average face
P = sqrt(numel(avg_face));
Q = numel(avg_face) / P;
imagesc(reshape(avg_face, P, Q)); title('Mean face');
colormap('gray');%% visualize some eigenfaces
figure;
num_eigenfaces_show = 9;
for i = 1:num_eigenfaces_showsubplot(3, 3, i)imagesc(reshape(eigenfaces(:, end-i+1), P, Q));title(['Eigenfaces ' num2str(i)]);
end
colormap('gray');%% transform all training images to eigen space (each column for each image)
disp('transform data to eigen space...');
X = bsxfun(@minus, train_x, avg_face);
T = eigenfaces' * X;%% transform the test image to eigen space
X_t = bsxfun(@minus, test_x, avg_face);
T_t = eigenfaces' * X_t;%% find the best match using Euclidean distance
disp('find the best match...');
AB = -2 * T_t' * T;       % N x M
BB = sum(T .* T);         % 1 x M
distance = bsxfun(@plus, AB, BB);        % N x M
[score, index] = min(distance, [], 2);   % N x 1%% compute accuracy
matchCount = 0;
for i=1:numel(index)predict = train_y(index(i));if predict == test_y(i)matchCount = matchCount + 1;end
endfprintf('**************************************\n');
fprintf('accuracy: %0.3f%% \n', 100 * matchCount / numel(index));
fprintf('**************************************\n');

      下面是将CroppedYale的图像读入matlab的代码。

function readYaleDataset(dataDir, saveName)dirs = dir(dataDir);data = [];labels = [];for i = 3:numel(dirs)imgDir = dirs(i).name;imgDir = fullfile(dataDir, imgDir);imgList = dir(fullfile(imgDir, '*.pgm'));for j = 1:numel(imgList)imgName = imgList(j).name;if strcmp('Ambient.pgm',  imgName(end-10:end))continue;endim = imread(fullfile(imgDir, imgName));if size(im, 3) ==3im = rgb2gray(im);endim = imresize(im, [32 32]);im = reshape(im, 32*32, 1);data = [data im];endlabels = [labels ones(1, numel(imgList)-1) * (i-2)];endsave(saveName, 'data', 'labels');
end

 

三、实验结果

      首先来个帅帅的平均脸:

      然后来9个帅帅的特征脸:

      在本实验中,实验结果是30.126%左右。如果加上了某些预处理,这个结果就可以跑到62%左右。只是这个预处理我有点解析不通,所以就没放在demo上了。

      本文如果有什么不对的地方,还望大家指正。

这篇关于人脸识别之特征脸识别方法EigenFace的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/919092

相关文章

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

深度学习实战:如何利用CNN实现人脸识别考勤系统

1. 何为CNN及其在人脸识别中的应用 卷积神经网络(CNN)是深度学习中的核心技术之一,擅长处理图像数据。CNN通过卷积层提取图像的局部特征,在人脸识别领域尤其适用。CNN的多个层次可以逐步提取面部的特征,最终实现精确的身份识别。对于考勤系统而言,CNN可以自动从摄像头捕捉的视频流中检测并识别出员工的面部。 我们在该项目中采用了 RetinaFace 模型,它基于CNN的结构实现高效、精准的

《计算机视觉工程师养成计划》 ·数字图像处理·数字图像处理特征·概述~

1 定义         从哲学角度看:特征是从事物当中抽象出来用于区别其他类别事物的属性集合,图像特征则是从图像中抽取出来用于区别其他类别图像的属性集合。         从获取方式看:图像特征是通过对图像进行测量或借助算法计算得到的一组表达特性集合的向量。 2 认识         有些特征是视觉直观感受到的自然特征,例如亮度、边缘轮廓、纹理、色彩等。         有些特征需要通

HalconDotNet中的图像特征与提取详解

文章目录 简介一、边缘特征提取二、角点特征提取三、区域特征提取四、纹理特征提取五、形状特征提取 简介   图像特征提取是图像处理中的一个重要步骤,用于从图像中提取有意义的特征,以便进行进一步的分析和处理。HalconDotNet提供了多种图像特征提取方法,每种方法都有其特定的应用场景和优缺点。 一、边缘特征提取   边缘特征提取是图像处理中最基本的特征提取方法之一,通过检

WebShell流量特征检测_哥斯拉篇

90后用菜刀,95后用蚁剑,00后用冰蝎和哥斯拉,以phpshell连接为例,本文主要是对后三款经典的webshell管理工具进行流量分析和检测。 什么是一句话木马? 1、定义 顾名思义就是执行恶意指令的木马,通过技术手段上传到指定服务器并可以正常访问,将我们需要服务器执行的命令上传并执行 2、特点 短小精悍,功能强大,隐蔽性非常好 3、举例 php一句话木马用php语言编写的,运行

图特征工程实践指南:从节点中心性到全局拓扑的多尺度特征提取

图结构在多个领域中扮演着重要角色,它能有效地模拟实体间的连接关系,通过从图中提取有意义的特征,可以获得宝贵的信息提升机器学习算法的性能。 本文将介绍如何利用NetworkX在不同层面(节点、边和整体图)提取重要的图特征。 本文将以NetworkX库中提供的Zachary网络作为示例。这个广为人知的数据集代表了一个大学空手道俱乐部的社交网络,是理解图特征提取的理想起点。 我们先定义一些辅助函数

【ML--05】第五课 如何做特征工程和特征选择

一、如何做特征工程? 1.排序特征:基于7W原始数据,对数值特征排序,得到1045维排序特征 2. 离散特征:将排序特征区间化(等值区间化、等量区间化),比如采用等量区间化为1-10,得到1045维离散特征 3. 计数特征:统计每一行中,离散特征1-10的个数,得到10维计数特征 4. 类别特征编码:将93维类别特征用one-hot编码 5. 交叉特征:特征之间两两融合,x+y、x-y、

【机器学习 sklearn】特征筛选feature_selection

特征筛选更加侧重于寻找那些对模型的性能提升较大的少量特征。 继续沿用Titannic数据集,这次试图通过特征刷选来寻找最佳的特征组合,并且达到提高预测准确性的目标。 #coding:utf-8from __future__ import divisionimport sysreload(sys)sys.setdefaultencoding('utf-8')import timest

【python 走进pytotch】pytorch实现用Resnet提取特征

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂, 而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程 准备一张图片,pytorch可以方便地实现用预训练的网络提取特征。 下面我们用pytorch提取图片采用预训练网络resnet50,提取图片特征。 # -*- coding: utf-8 -*-import os

快手HBase在千亿级用户特征数据分析中的应用与实践

声明:本文的原文是来自Hbase技术社区的一个PPT分享,个人做了整理和提炼。大家注意哈,这种会议PPT类的东西能学习到的更多的是技术方案和他人在实践过程中的经验。希望对大家有帮助。 背景 快手每天产生数百亿用户特征数据,分析师需要在跨30-90天的数千亿特征数据中,任意选择多维度组合(如:城市=北京&性别=男),秒级分析用户行为。针对这一需求, 快手基于HBase自主研发了支持bitmap转