VGG-pytorch实现

2024-04-19 07:48
文章标签 实现 pytorch vgg

本文主要是介绍VGG-pytorch实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

VGG

1.网络结构

img

如图可见,VGG网络的构造很简单,通过不断地卷积,池化,扩大通道数,降低宽高,最终平展为一维数据再进行softmax分类。相较于AlexNet而言,VGG最大的特征就是降低了卷积核尺寸,增加了卷积核的深度层数,拥有更多的非线性变换,增加了CNN对特征的学习能力。

2.pytorch网络设计

这里采用的数据集为FashionMNIST数据集,慢慢地往后的文章也会引入更多的数据集使用,Fashion MNIST包含了10种类别70000个不同时尚穿戴品的图像,整体数据结构上跟MNIST完全一致。每张图像的尺寸同样是28*28,但下载下来的数据通道数为1。

#定义块
def vgg_block(num_convs, in_channels, num_channels):layers = []for i in range(num_convs):layers += [nn.Conv2d(in_channels=in_channels, out_channels=num_channels, kernel_size=3, padding=1)]in_channels = num_channelslayers += [nn.ReLU()]layers += [nn.MaxPool2d(kernel_size=2, stride=2)]return nn.Sequential(*layers)# 网络定义
class VGG(nn.Module):def __init__(self):super(VGG, self).__init__()# 这里适配输入为3x224x224的图片self.conv_arch = ((1, 3, 64), (1, 64, 128), (2, 128, 256), (2, 256, 512), (2, 512, 512))self.conv_arch_28x28 =((2, 256, 512), (2, 512, 512))# 这里为了适配1x28x28的输入图片大小,对原始网络层做些修改#前四层不做池化,保留原始特征self.conv_28x28=nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1)self.conv_28x28_2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1)self.conv_28x28_3 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1)self.conv_28x28_4 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1)#后4层使用VGG块构造layers = []for (num_convs, in_channels, num_channels) in self.conv_arch_28x28:layers += [vgg_block(num_convs, in_channels, num_channels)]self.features = nn.Sequential(*layers)self.Linear = nn.Linear(512 * 7 * 7, 4096)self.drop1 = nn.Dropout(0.5)self.Linear2 = nn.Linear(4096, 4096)self.drop2 = nn.Dropout(0.5)self.Linear3 = nn.Linear(4096, 10)def forward(self, x):x=F.relu(self.conv_28x28(x))x = F.relu(self.conv_28x28_2(x))x = F.relu(self.conv_28x28_3(x))x = F.relu(self.conv_28x28_4(x))x = self.features(x)x = x.view(-1, 512 * 7 * 7)x = self.Linear3(self.drop2(F.relu(self.Linear2(self.drop1(F.relu(self.Linear(x)))))))return x

3.网络测试

1.数据集读取分类

# 数据增强
draw = draw_tool.draw_tool()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
transform = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.RandomGrayscale(),transforms.ToTensor()])
# 验证集不增强
transform1 = transforms.Compose([transforms.ToTensor()])train_set = torchvision.datasets.FashionMNIST(root='F:\\pycharm\\dataset', train=True,download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=30,shuffle=True, num_workers=2)test_set = torchvision.datasets.FashionMNIST(root='F:\\pycharm\\dataset', train=False,download=True, transform=transform1)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=30,shuffle=False, num_workers=2)

2.模型训练设置

model = VGG()criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
model = model.to(device)

3.训练

if __name__ == '__main__':for epoch in range(4):train(epoch)torch.save(model.state_dict(), "minist_last.pth")draw.show()

训练部分,可能是由于网络太大,或者是数据集太多的缘故,跑得非常慢,所以这里只针对整个数据集进行了4个epoch训练,训练测试结果如下:
在这里插入图片描述
在这里插入图片描述

最后一次训练的精度达到了86.77%,但明显可以看出还可以继续增加。

4.总结

​ VGG16相比AlexNet的一个改进是采用连续的几个3x3的卷积核代替AlexNet中的较大卷积核(11x11,7x7,5x5)。对于给定的感受野,采用堆积的小卷积核是优于采用大的卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。

​ 在VGG中,使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5*5卷积核,这样做的主要目的是在保证具有相同感知野的条件下,提升了网络的深度,在一定程度上提升了神经网络的效果。这点我认为应该是把卷积宽高改革为卷积层数,能更好地去调整参数。

​ 使用3x3卷积核的好处:减少了总体传入显卡的参数,且有利于保护图像的原始性质。
最后非常希望有一样的初学者或者大佬能多评论留言,一起分享一下过程和经历,感激不尽。

5.补充

最近学着用tensorboard,又跑了一遍,记录一下效果。
在这里插入图片描述

这篇关于VGG-pytorch实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916959

相关文章

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定