SPI接口的74HC595驱动数码管实现

2024-04-19 07:28

本文主要是介绍SPI接口的74HC595驱动数码管实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摸鱼记录 Day_17      (((^-^)))

review

        前边已经学习了:

        数码管显示原理:数码管动态扫描显示-CSDN博客

        且挖了个SPI的坑坑

1.  今日份摸鱼任务

学习循环移位寄存器18 串行移位寄存器原理详解_哔哩哔哩_bilibili

学习SPI接口的74HC595驱动数码管19 SPI接口的74HC595驱动数码管实验_哔哩哔哩_bilibili

了解SPI协议:SPI协议详解(图文并茂+超详细) - 知乎 (zhihu.com)

                        SPI总线协议及SPI时序图详解 - Ady Lee - 博客园 (cnblogs.com)

2.  循环移位寄存器

        四位D触发器,输入信号1001,经过四次时钟上升沿,D0-D3 1001

        DATA是串行数据,在此结构下,每个上升沿到来,都会改变D0-D3的输出

        为了正确输出四位的串转并数据

        可在红色箭头处,添加一个使能信号,对输出进行控制

此时,使用CLK、DATA、LATCH三根信号线,即可完成将串行信号转为并行信号

3.  74HC959 循环移位寄存器

        一文搞懂74HC595芯片(附使用方法)_74hc595芯片引脚图及功能-CSDN博客

        74HC595的最重要的功能就是:串行输入,并行输出。

        其次,74HC595里面有2个8位寄存器:移位寄存器、存储寄存器。

    第一个从SER送入的bit将会从 Q7 出去

   本篇在草稿呆了很多天,因为上图SHCP  STCP的画法有一定理解上的问题

    SHCP       移位寄存器的时钟输出

    STCP       存储寄存器的时钟输出

    但是在例程中

        STCP是在数据都保存后,完成一次输出,这保证了输出数据是一个完整的

        ACZ702 配套 EDA 扩展板设计用到了芯片 74HC595,该芯片的作用是移位寄存器,通过移位的方式,节省 FPGA 的管脚。FPGA 只需要输出 3 个管脚,即可达到发送数码管数据的目的,与数码管动态扫描显示-CSDN博客的传统段选位选方式相比节省了 IO 设计资源。

        3.3V供电情况下,50MHz -----》25MHz-----》12.5MHz

4. VIO  Virtual Input/Output

        关于这个IP核可以看:Vivado中VIO IP核的使用_vivado vio-CSDN博客

        本次实验,用于设定数码管的显示内容,具体设置如下:

4.  SPI接口的74HC595驱动数码管实现 (((^-^)))

                SPI(Serial Peripheral Interface),串行外围设备接口。

                SPI是一个同步的数据总线,用单独的数据线一个单独的时钟信号来保证发送端和接收端的同步

                可以参考:SPI协议详解(图文并茂+超详细) - 知乎 (zhihu.com)

        对于74HC595,本次SPI协议,是学习SCK MOSI,无需MISO,片选默认选中

4.1   design sources

hex_8  

module hex_8(input clk,
                     input reset_n,
                     input [31:0]disp_data, 

                     //8个数码管进行显示,每个显示0~F,输入格式为disp_data = 32'h12345678
                     output reg [7:0]sel,
                     output reg [7:0]seg
                     );

        //[31:0]disp_data  16hex 4*8
        //[7:0]sel 位选信号
        //[7:0]seg 段选信号

// 1kHz分频时钟 
    reg [14:0]div_clk;
    always@(posedge clk or negedge reset_n)
    if(!reset_n) 
        div_clk <= 1'b0;
    else if(div_clk == 24999) 
        div_clk <= 1'b0;
    else 
        div_clk <= div_clk + 1'b1;
    reg disp_en;
   always@(posedge clk or negedge reset_n)
    if(!reset_n) 
        disp_en <= 1'b0;
    else if(div_clk == 24999) 
        disp_en <= 1'b1;
    else 
        disp_en <= 1'b0;    

//  位选sel
    reg[2:0]sel_num;
    always@(posedge clk or negedge reset_n)
    if(!reset_n) 
        sel_num <= 3'b000;
    else if(disp_en) 
        sel_num <= sel_num + 1'b1;
        
    always@(posedge clk or negedge reset_n)
    if(!reset_n) 
        sel <= 8'b0000_0000;
    else case(sel_num) 
         0:sel <= 8'b0000_0001;
         1:sel <= 8'b0000_0010;
         2:sel <= 8'b0000_0100;
         3:sel <= 8'b0000_1000;
         4:sel <= 8'b0001_0000;
         5:sel <= 8'b0010_0000;
         6:sel <= 8'b0100_0000;
         7:sel <= 8'b1000_0000;
    endcase   
   
// 段选seg   [31:0]disp_data  16hex 4*8
    reg [3:0] dis_tmp;
    always@(posedge clk )
    case(sel_num) //高位放前面
         0:dis_tmp <= disp_data[31:28];
         1:dis_tmp <= disp_data[27:24];
         2:dis_tmp <= disp_data[23:20];
         3:dis_tmp <= disp_data[19:16];
         4:dis_tmp <= disp_data[15:12];
         5:dis_tmp <= disp_data[11:8];
         6:dis_tmp <= disp_data[7:4];
         7:dis_tmp <= disp_data[3:0];
    endcase 
    
    always@(posedge clk )
    case(dis_tmp) 
         0:seg <= 8'hc0;
         1:seg <= 8'hf9;
         2:seg <= 8'ha4;
         3:seg <= 8'hb0;
         4:seg <= 8'h99;
         5:seg <= 8'h92;
         6:seg <= 8'h82;
         7:seg <= 8'hf8;
         8:seg <= 8'h80;
         9:seg <= 8'h90;
         4'ha:seg <= 8'h88;
         4'hb:seg <= 8'h83;
         4'hc:seg <= 8'hc6;
         4'hd:seg <= 8'ha1;
         4'he:seg <= 8'h86;
         4'hf:seg <= 8'h8e;
    endcase 

endmodule

hc595_driver   //在Verilog中,不能使用数字开头命名

module hc595_driver(
                    input clk,
                    input reset_n,
                    input [15:0]data,
                    input s_en,
                    
                    output reg sh_cp,
                    output reg st_cp,
                    output reg ds
                 );

                /启动信号s_en时,保存当前data

             reg [15:0]r_data;
            always@(posedge clk)
            if(s_en)
                r_data <= data;


    parameter CNT_MAX = 2;
   // 3.3V 状态下工作于 12.5MHz   

    reg [7:0]divider_cnt;//分频计数器
    always@(posedge clk or negedge reset_n)
    if(!reset_n)
        divider_cnt <= 0;
    else if(divider_cnt == CNT_MAX - 1'b1)
        divider_cnt <= 0;
    else
        divider_cnt <= divider_cnt + 1'b1;
        
    wire sck_plus;
    assign sck_plus = (divider_cnt == CNT_MAX - 1'b1);
        
    reg [5:0]SHCP_EDGE_CNT;
    
    always@(posedge clk or negedge reset_n)
    if(!reset_n)
        SHCP_EDGE_CNT <= 0;
    else if(sck_plus)
        begin
            if(SHCP_EDGE_CNT == 6'd32) //32 16个数据,按照SH_CP上升沿、下降沿
                SHCP_EDGE_CNT <= 0;
            else
                SHCP_EDGE_CNT <= SHCP_EDGE_CNT + 1'b1;
        end
    else
        SHCP_EDGE_CNT <= SHCP_EDGE_CNT;
        
    always@(posedge clk or negedge reset_n)
    if(!reset_n)
        begin
            st_cp <= 1'b0;
            ds <= 1'b0;
            sh_cp <= 1'd0;
        end 
    else begin
        case(SHCP_EDGE_CNT)//重点就是线性序列机这部分分析啦

                        //SH_CP 移位寄存器的时钟

                        //在SH_CP上升沿  0->1 输出数据

                        //在SH_CP下降沿  1->0 改变数据
            0: begin sh_cp <= 0; st_cp <= 1'd0;ds <= r_data[15];end
            1: begin sh_cp <= 1; st_cp <= 1'd0;end
            2: begin sh_cp <= 0; ds <= r_data[14];end
            3: begin sh_cp <= 1; end
            4: begin sh_cp <= 0; ds <= r_data[13];end    
            5: begin sh_cp <= 1; end
            6: begin sh_cp <= 0; ds <= r_data[12];end    
            7: begin sh_cp <= 1; end
            8: begin sh_cp <= 0; ds <= r_data[11];end    
            9: begin sh_cp <= 1; end
            10: begin sh_cp <= 0; ds <= r_data[10];end    
            11: begin sh_cp <= 1; end
            12: begin sh_cp <= 0; ds <= r_data[9];end    
            13: begin sh_cp <= 1; end
            14: begin sh_cp <= 0; ds <= r_data[8];end    
            15: begin sh_cp <= 1; end
            16: begin sh_cp <= 0; ds <= r_data[7];end    
            17: begin sh_cp <= 1; end
            18: begin sh_cp <= 0; ds <= r_data[6];end    
            19: begin sh_cp <= 1; end
            20: begin sh_cp <= 0; ds <= r_data[5];end    
            21: begin sh_cp <= 1; end
            22: begin sh_cp <= 0; ds <= r_data[4];end    
            23: begin sh_cp <= 1; end
            24: begin sh_cp <= 0; ds <= r_data[3];end    
            25: begin sh_cp <= 1; end
            26: begin sh_cp <= 0; ds <= r_data[2];end    
            27: begin sh_cp <= 1; end
            28: begin sh_cp <= 0; ds <= r_data[1];end            
            29: begin sh_cp <= 1; end
            30: begin sh_cp <= 0; ds <= r_data[0];end
            31: begin sh_cp <= 1; end
            32: st_cp <= 1'd1;//最后拉高一下st_cp锁存器输出
            default:        
                begin
                    st_cp <= 1'b0;
                    ds <= 1'b0;
                    sh_cp <= 1'd0;
                end
        endcase
    end

endmodule

hex_top

module hex_top(
                clk,
                reset_n,
                sh_cp,
                st_cp,
                ds
                 );

    input clk;    //50M
    input reset_n;
    
    output sh_cp;
    output st_cp;
    output ds;
    
    wire [31:0]disp_data;
    wire [7:0] sel;//数码管位选(选择当前要显示的数码管)
    wire [7:0] seg;//数码管段选(当前要显示的内容)
    
    vio_0 vio_0 (
        .clk(clk), 
        .probe_out0(disp_data)  
    );
    
    hc595_driver hc595_driver(
        .clk(clk),
        .reset_n(reset_n),
        .data({seg,sel}),  //将段选与位选信号拼接在一起
        .s_en(1'b1),
        .sh_cp(sh_cp),
        .st_cp(st_cp),
        .ds(ds)
    );
    
    hex8 hex8(
        .clk(clk),
        .reset_n(reset_n),
        .en(1'b1),
        .disp_data(disp_data),
        .sel(sel),
        .seg(seg)
    );
    
endmodule

4.2  板级验证

//好啦, (((^-^)))

这篇关于SPI接口的74HC595驱动数码管实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916907

相关文章

基于C++的UDP网络通信系统设计与实现详解

《基于C++的UDP网络通信系统设计与实现详解》在网络编程领域,UDP作为一种无连接的传输层协议,以其高效、低延迟的特性在实时性要求高的应用场景中占据重要地位,下面我们就来看看如何从零开始构建一个完整... 目录前言一、UDP服务器UdpServer.hpp1.1 基本框架设计1.2 初始化函数Init详解

Java中Map的五种遍历方式实现与对比

《Java中Map的五种遍历方式实现与对比》其实Map遍历藏着多种玩法,有的优雅简洁,有的性能拉满,今天咱们盘一盘这些进阶偏基础的遍历方式,告别重复又臃肿的代码,感兴趣的小伙伴可以了解下... 目录一、先搞懂:Map遍历的核心目标二、几种遍历方式的对比1. 传统EntrySet遍历(最通用)2. Lambd

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

SpringBoo WebFlux+MongoDB实现非阻塞API过程

《SpringBooWebFlux+MongoDB实现非阻塞API过程》本文介绍了如何使用SpringBootWebFlux和MongoDB实现非阻塞API,通过响应式编程提高系统的吞吐量和响应性能... 目录一、引言二、响应式编程基础2.1 响应式编程概念2.2 响应式编程的优势2.3 响应式编程相关技术

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

Nginx更新SSL证书的实现步骤

《Nginx更新SSL证书的实现步骤》本文主要介绍了Nginx更新SSL证书的实现步骤,包括下载新证书、备份旧证书、配置新证书、验证配置及遇到问题时的解决方法,感兴趣的了解一下... 目录1 下载最新的SSL证书文件2 备份旧的SSL证书文件3 配置新证书4 验证配置5 遇到的http://www.cppc

Nginx之https证书配置实现

《Nginx之https证书配置实现》本文主要介绍了Nginx之https证书配置的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起... 目录背景介绍为什么不能部署在 IIS 或 NAT 设备上?具体实现证书获取nginx配置扩展结果验证

SpringBoot整合 Quartz实现定时推送实战指南

《SpringBoot整合Quartz实现定时推送实战指南》文章介绍了SpringBoot中使用Quartz动态定时任务和任务持久化实现多条不确定结束时间并提前N分钟推送的方案,本文结合实例代码给大... 目录前言一、Quartz 是什么?1、核心定位:解决什么问题?2、Quartz 核心组件二、使用步骤1