本文主要是介绍Kafka 监控及使用 JMX 进行远程监控的安全注意事项,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
一. 前言
二. Kafka 监控(Kafka Monitoring)
2.1. 概览
2.2. 使用 JMX 进行远程监控的安全注意事项
一. 前言
众所周知,Kafka 的集中式设计具有很强的耐用性和容错性。此外,由于 Kafka 是一个分布式系统,因此 Topic 在多个节点之间进行分区和复制。此外,Kafka 可以成为数据集成的极具吸引力的选择,具有有意义的性能监控和对问题的及时警报。基本上,当对 Kafka 问题进行故障排除时,应用程序管理器会向需要采取纠正措施的人收集所有性能指标和警报。
二. Kafka 监控(Kafka Monitoring)
2.1. 概览
原文引用:Kafka uses Yammer Metrics for metrics reporting in the server. The Java clients use Kafka Metrics, a built-in metrics registry that minimizes transitive dependencies pulled into client applications. Both expose metrics via JMX and can be configured to report stats using pluggable stats reporters to hook up to your monitoring system.
Kafka 使用 Yammer Metrics 在服务器中进行度量报告。Java 客户端使用 Kafka Metrics,这是一个内置的度量注册表,可以最大限度地减少客户端应用程序中的可传递依赖关系。两者都通过JMX 公开度量,并且可以配置为使用可插入的统计报告器报告统计信息,以连接到您的监控系统。
原文引用:All Kafka rate metrics have a corresponding cumulative count metric with suffix -total. For example, records-consumed-rate has a corresponding metric named records-consumed-total.
所有 Kafka 速率度量都有一个后缀为 -total 的相应累积计数度量。例如,records-consumed-rate(记录消费率)有一个名为 records-consumed-total(记录消费总量)的相应度量。
原文引用:The easiest way to see the available metrics is to fire up jconsole and point it at a running kafka client or server; this will allow browsing all metrics with JMX.
查看可用度量的最简单方法是启动 jconsole 并将其指向正在运行的 Kafka 客户端或服务器;这将允许使用 JMX 浏览所有度量。
2.2. 使用 JMX 进行远程监控的安全注意事项
原文引用:Apache Kafka disables remote JMX by default. You can enable remote monitoring using JMX by setting the environment variable JMX_PORT for processes started using the CLI or standard Java system properties to enable remote JMX programmatically. You must enable security when enabling remote JMX in production scenarios to ensure that unauthorized users cannot monitor or control your broker or application as well as the platform on which these are running. Note that authentication is disabled for JMX by default in Kafka and security configs must be overridden for production deployments by setting the environment variable KAFKA_JMX_OPTS for processes started using the CLI or by setting appropriate Java system properties. See Monitoring and Management Using JMX Technology for details on securing JMX.
We do graphing and alerting on the following metrics:
Apache Kafka 默认禁用远程 JMX。您可以使用 JMX 启用远程监控,方法是为使用 CLI 或标准Java 系统属性启动的进程设置环境变量 JMX_PORT,以编程方式启用远程 JMX。在生产场景中启用远程 JMX 时,必须启用安全性,以确保未经授权的用户无法监视或控制您的 Broker 或应用程序以及运行这些 Broker 或应用程序的平台。请注意,在 Kafka 中,默认情况下会禁用 JMX 的身份验证,并且必须通过为使用 CLI 启动的进程设置环境变量 Kafka_JMX_OPTS 或设置适当的Java 系统属性来覆盖生产部署的安全配置。有关保护 JMX 的详细信息,请参阅使用 JMX 技术进行监视和管理。
我们根据以下指标进行绘图和警报:
DESCRIPTION | MBEAN NAME | NORMAL VALUE |
---|---|---|
Message in rate 消息速率 | kafka.server:type=BrokerTopicMetrics, name=MessagesInPerSec,topic=([-.\w]+) | Incoming message rate per topic. Omitting 'topic=(...)' will yield the all-topic rate. |
Byte in rate from clients 客户端字节速率 | kafka.server:type=BrokerTopicMetrics, name=BytesInPerSec,topic=([-.\w]+) | Byte in (from the clients) rate per topic. Omitting 'topic=(...)' will yield the all-topic rate. |
Byte in rate from other brokers 其他brokers字节速率 | kafka.server:type=BrokerTopicMetrics, name=ReplicationBytesInPerSec | Byte in (from the other brokers) rate across all topics. |
Controller Request rate from Broker | kafka.controller:type=ControllerChannelManager, name=RequestRateAndQueueTimeMs, brokerId=([0-9]+) | The rate (requests per second) at which the ControllerChannelManager takes requests from the queue of the given broker. And the time it takes for a request to stay in this queue before it is taken from the queue. |
Controller Event queue size | kafka.controller:type=ControllerEventManager, name=EventQueueSize | Size of the ControllerEventManager's queue. |
Controller Event queue time | kafka.controller:type=ControllerEventManager, name=EventQueueTimeMs | Time that takes for any event (except the Idle event) to wait in the ControllerEventManager's queue before being processed |
Request rate 请求速率 | kafka.network:type=RequestMetrics, name=RequestsPerSec, request={Produce|FetchConsumer|FetchFollower}, version=([0-9]+) | |
Error rate 错误速率 | kafka.network:type=RequestMetrics, name=ErrorsPerSec,request=([-.\w]+), error=([-.\w]+) | Number of errors in responses counted per-request-type, per-error-code. If a response contains multiple errors, all are counted. error=NONE indicates successful responses. |
Produce request rate | kafka.server:type=BrokerTopicMetrics, name=TotalProduceRequestsPerSec, topic=([-.\w]+) | Produce request rate per topic. Omitting 'topic=(...)' will yield the all-topic rate. |
Fetch request rate | kafka.server:type=BrokerTopicMetrics, name=TotalFetchRequestsPerSec, topic=([-.\w]+) | Fetch request (from clients or followers) rate per topic. Omitting 'topic=(...)' will yield the all-topic rate. |
Failed produce request rate | kafka.server:type=BrokerTopicMetrics, name=FailedProduceRequestsPerSec, topic=([-.\w]+) | Failed Produce request rate per topic. Omitting 'topic=(...)' will yield the all-topic rate. |
Failed fetch request rate | kafka.server:type=BrokerTopicMetrics, name=FailedFetchRequestsPerSec, topic=([-.\w]+) | Failed Fetch request (from clients or followers) rate per topic. Omitting 'topic=(...)' will yield the all-topic rate. |
Request size in bytes 请求大小(以字节为单位) | kafka.network:type=RequestMetrics, name=RequestBytes,request=([-.\w]+) | Size of requests for each request type. |
Temporary memory size in bytes 临时内存大小(以字节为段位) | kafka.network:type=RequestMetrics, name=TemporaryMemoryBytes,request={Produce|Fetch} | Temporary memory used for message format conversions and decompression. |
Message conversion time 消息转换时间 | kafka.network:type=RequestMetrics, name=MessageConversionsTimeMs, request={Produce|Fetch} | Time in milliseconds spent on message format conversions. |
Message conversion rate 消息转换比率 | kafka.server:type=BrokerTopicMetrics, name={Produce|Fetch}MessageConversionsPerSec, topic=([-.\w]+) | Message format conversion rate, for Produce or Fetch requests, per topic. Omitting 'topic=(...)' will yield the all-topic rate. |
Request Queue Size | kafka.network:type=RequestChannel, name=RequestQueueSize | Size of the request queue. |
Byte out rate to clients 向客户端的字节输出率 | kafka.server:type=BrokerTopicMetrics, name=BytesOutPerSec,topic=([-.\w]+) | Byte out (to the clients) rate per topic. Omitting 'topic=(...)' will yield the all-topic rate. |
Byte out rate to other brokers 对其他broker的字节输出率 | kafka.server:type=BrokerTopicMetrics, name=ReplicationBytesOutPerSec | Byte out (to the other brokers) rate across all topics |
Rejected byte rate | kafka.server:type=BrokerTopicMetrics, name=BytesRejectedPerSec,topic=([-.\w]+) | Rejected byte rate per topic, due to the record batch size being greater than max.message.bytes configuration. Omitting 'topic=(...)' will yield the all-topic rate. |
Message validation failure rate due to no key specified for compacted topic 由于未为压缩topic指定key,消息验证失败率 | kafka.server:type=BrokerTopicMetrics, name=NoKeyCompactedTopicRecordsPerSec | 0 |
Message validation failure rate due to invalid magic number 无效的magic导致的消息验证失败率 | kafka.server:type=BrokerTopicMetrics, name=InvalidMagicNumberRecordsPerSec | 0 |
Message validation failure rate due to incorrect crc checksum 由于错误的crc校验和导致的消息验证失败率 | kafka.server:type=BrokerTopicMetrics, name=InvalidMessageCrcRecordsPerSec | 0 |
Message validation failure rate due to non-continuous offset or sequence number in batch 由于不连续offset或批处理中的序列号,导致消息验证失败率 | kafka.server:type=BrokerTopicMetrics, name=InvalidOffsetOrSequenceRecordsPerSec | 0 |
Log flush rate and time 日志刷新率和时间 | kafka.log:type=LogFlushStats, name=LogFlushRateAndTimeMs | |
# of offline log directories 脱机日志目录 | kafka.log:type=LogManager, name=OfflineLogDirectoryCount | 0 |
Leader election rate leader选举率 | kafka.controller:type=ControllerStats, name=LeaderElectionRateAndTimeMs | non-zero when there are broker failures |
Unclean leader election rate 未清理的leader选举率 | kafka.controller:type=ControllerStats, name=UncleanLeaderElectionsPerSec | 0 |
Is controller active on broker 控制器在broker上是否活跃 | kafka.controller:type=KafkaController, name=ActiveControllerCount | only one broker in the cluster should have 1 |
Pending topic deletes 待删除主题 | kafka.controller:type=KafkaController, name=TopicsToDeleteCount | |
Pending replica deletes 待删除的副本 | kafka.controller:type=KafkaController, name=ReplicasToDeleteCount | |
Ineligible pending topic deletes 不合格的待删除主题 | kafka.controller:type=KafkaController, name=TopicsIneligibleToDeleteCount | |
Ineligible pending replica deletes 不合格的待删除副本 | kafka.controller:type=KafkaController, name=ReplicasIneligibleToDeleteCount | |
# of under replicated partitions (|ISR| < |all replicas|) | kafka.server:type=ReplicaManager, name=UnderReplicatedPartitions | 0 |
# of under minIsr partitions (|ISR| < min.insync.replicas) | kafka.server:type=ReplicaManager, name=UnderMinIsrPartitionCount | 0 |
# of at minIsr partitions (|ISR| = min.insync.replicas) | kafka.server:type=ReplicaManager, name=AtMinIsrPartitionCount | 0 |
Producer Id counts | kafka.server:type=ReplicaManager, name=ProducerIdCount | Count of all producer ids created by transactional and idempotent producers in each replica on the broker |
Partition counts 分区数 | kafka.server:type=ReplicaManager, name=PartitionCount | mostly even across brokers |
Offline Replica counts | kafka.server:type=ReplicaManager, name=OfflineReplicaCount | 0 |
Leader replica counts Leader副本数 | kafka.server:type=ReplicaManager, name=LeaderCount | mostly even across brokers |
ISR shrink rate ISR收缩率 | kafka.server:type=ReplicaManager, name=IsrShrinksPerSec | If a broker goes down, ISR for some of the partitions will shrink. When that broker is up again, ISR will be expanded once the replicas are fully caught up. Other than that, the expected value for both ISR shrink rate and expansion rate is 0. |
ISR expansion rate ISR扩展率 | kafka.server:type=ReplicaManager, name=IsrExpandsPerSec | See above |
Failed ISR update rate | kafka.server:type=ReplicaManager, name=FailedIsrUpdatesPerSec | 0 |
Max lag in messages btw follower and leader replicas follower副本和leader副本之间的最大消息延迟 | kafka.server:type=ReplicaFetcherManager, name=MaxLag,clientId=Replica | lag should be proportional to the maximum batch size of a produce request. |
Lag in messages per follower replica 每个follower副本的消息延迟 | kafka.server:type=FetcherLagMetrics, name=ConsumerLag,clientId=([-.\w]+), topic=([-.\w]+),partition=([0-9]+) | lag should be proportional to the maximum batch size of a produce request. |
Requests waiting in the producer purgatory 请求在生产者purgatory中等待 | kafka.server:type=DelayedOperationPurgatory, name=PurgatorySize, delayedOperation=Produce | non-zero if ack=-1 is used |
Requests waiting in the fetch purgatory 请求在purgatory中等待 | kafka.server:type=DelayedOperationPurgatory, name=PurgatorySize,delayedOperation=Fetch | size depends on fetch.wait.max.ms in the consumer |
Request total time 请求总时间 | kafka.network:type=RequestMetrics, name=TotalTimeMs, request={Produce|FetchConsumer|FetchFollower} | broken into queue, local, remote and response send time |
Time the request waits in the request queue 请求在请求队列中等待的时间 | kafka.network:type=RequestMetrics, name=RequestQueueTimeMs, request={Produce|FetchConsumer|FetchFollower} | |
Time the request is processed at the leader leader处理请求的时间 | kafka.network:type=RequestMetrics, name=LocalTimeMs, request={Produce|FetchConsumer|FetchFollower} | |
Time the request waits for the follower 请求等待follower的时间 | kafka.network:type=RequestMetrics, name=RemoteTimeMs, request={Produce|FetchConsumer|FetchFollower} | non-zero for produce requests when ack=-1 |
Time the request waits in the response queue 请求在响应队列中等待的时间 | kafka.network:type=RequestMetrics, name=ResponseQueueTimeMs, request={Produce|FetchConsumer|FetchFollower} | |
Time to send the response 发送回应的时间 | kafka.network:type=RequestMetrics, name=ResponseSendTimeMs, request={Produce|FetchConsumer|FetchFollower} | |
Number of messages the consumer lags behind the producer by. Published by the consumer, not broker. 消费者落后于生产者的消息数。 由消费者而非broker提供。 | kafka.consumer:type=consumer-fetch-manager-metrics, client-id={client-id} Attribute: records-lag-max | |
The average fraction of time the network processors are idle 网络处理空闲的平均时间 | kafka.network:type=SocketServer, name=NetworkProcessorAvgIdlePercent | between 0 and 1, ideally > 0.3 |
The number of connections disconnected on a processor due to a client not re-authenticating and then using the connection beyond its expiration time for anything other than re-authentication 由于客户端未重新进行身份验证,然后将连接超出其到期时间而用于除重新身份验证以外的任何操作而在处理器上断开的连接数 | kafka.server:type=socket-server-metrics, listener=[SASL_PLAINTEXT|SASL_SSL], networkProcessor=<#>, name=expired-connections-killed-count | ideally 0 when re-authentication is enabled, implying there are no longer any older, pre-2.2.0 clients connecting to this (listener, processor) combination |
The total number of connections disconnected, across all processors, due to a client not re-authenticating and then using the connection beyond its expiration time for anything other than re-authentication 由于客户端未重新进行身份验证,然后在其过期时间之后使用该连接进行除重新身份验证以外的任何操作时,所有处理器之间断开连接的总数 | kafka.network:type=SocketServer, name=ExpiredConnectionsKilledCount | ideally 0 when re-authentication is enabled, implying there are no longer any older, pre-2.2.0 clients connecting to this broker |
The average fraction of time the request handler threads are idle 请求处理程序线程空闲的平均时间百分比 | kafka.server:type=KafkaRequestHandlerPool, name=RequestHandlerAvgIdlePercent | between 0 and 1, ideally > 0.3 |
Bandwidth quota metrics per (user, client-id), user or client-id 每个(user, client-id),user或client-id的带宽配额指标 | kafka.server:type={Produce|Fetch}, user=([-.\w]+),client-id=([-.\w]+) | Two attributes. throttle-time indicates the amount of time in ms the client was throttled. Ideally = 0. byte-rate indicates the data produce/consume rate of the client in bytes/sec. For (user, client-id) quotas, both user and client-id are specified. If per-client-id quota is applied to the client, user is not specified. If per-user quota is applied, client-id is not specified. |
Request quota metrics per (user, client-id), user or client-id 每个(user, client-id),user或client-id的请求配额指标 | kafka.server:type=Request, user=([-.\w]+),client-id=([-.\w]+) | Two attributes. throttle-time indicates the amount of time in ms the client was throttled. Ideally = 0. request-time indicates the percentage of time spent in broker network and I/O threads to process requests from client group. For (user, client-id) quotas, both user and client-id are specified. If per-client-id quota is applied to the client, user is not specified. If per-user quota is applied, client-id is not specified. |
Requests exempt from throttling 请求不受限制 | kafka.server:type=Request | exempt-throttle-time indicates the percentage of time spent in broker network and I/O threads to process requests that are exempt from throttling. |
ZooKeeper client request latency ZooKeeper客户端请求延迟 | kafka.server:type=ZooKeeperClientMetrics, name=ZooKeeperRequestLatencyMs | Latency in milliseconds for ZooKeeper requests from broker. |
ZooKeeper connection status ZooKeeper连接状态 | kafka.server:type=SessionExpireListener, name=SessionState | Connection status of broker's ZooKeeper session which may be one of Disconnected|SyncConnected|AuthFailed|ConnectedReadOnly|SaslAuthenticated|Expired. |
Max time to load group metadata 加载组元数据的最长时间 | kafka.server:type=group-coordinator-metrics, name=partition-load-time-max | maximum time, in milliseconds, it took to load offsets and group metadata from the consumer offset partitions loaded in the last 30 seconds (including time spent waiting for the loading task to be scheduled) |
Avg time to load group metadata 加载组元数据的平均时间 | kafka.server:type=group-coordinator-metrics, name=partition-load-time-avg | average time, in milliseconds, it took to load offsets and group metadata from the consumer offset partitions loaded in the last 30 seconds (including time spent waiting for the loading task to be scheduled) |
Max time to load transaction metadata 加载交易元数据的最长时间 | kafka.server:type=transaction-coordinator-metrics, name=partition-load-time-max | maximum time, in milliseconds, it took to load transaction metadata from the consumer offset partitions loaded in the last 30 seconds (including time spent waiting for the loading task to be scheduled) |
Avg time to load transaction metadata 加载交易元数据的平均时间 | kafka.server:type=transaction-coordinator-metrics, name=partition-load-time-avg | average time, in milliseconds, it took to load transaction metadata from the consumer offset partitions loaded in the last 30 seconds (including time spent waiting for the loading task to be scheduled) |
Rate of transactional verification errors | kafka.server:type=AddPartitionsToTxnManager, name=VerificationFailureRate | Rate of verifications that returned in failure either from the AddPartitionsToTxn API response or through errors in the AddPartitionsToTxnManager. In steady state 0, but transient errors are expected during rolls and reassignments of the transactional state partition. |
Time to verify a transactional request | kafka.server:type=AddPartitionsToTxnManager, name=VerificationTimeMs | The amount of time queueing while a possible previous request is in-flight plus the round trip to the transaction coordinator to verify (or not verify) |
Consumer Group Offset Count | kafka.server:type=GroupMetadataManager, name=NumOffsets | Total number of committed offsets for Consumer Groups |
Consumer Group Count | kafka.server:type=GroupMetadataManager, name=NumGroups | Total number of Consumer Groups |
Consumer Group Count, per State | kafka.server:type=GroupMetadataManager, name=NumGroups[PreparingRebalance, CompletingRebalance,Empty,Stable,Dead] | The number of Consumer Groups in each state: PreparingRebalance, CompletingRebalance, Empty, Stable, Dead |
Number of reassigning partitions | kafka.server:type=ReplicaManager, name=ReassigningPartitions | The number of reassigning leader partitions on a broker. |
Outgoing byte rate of reassignment traffic | kafka.server:type=BrokerTopicMetrics, name=ReassignmentBytesOutPerSec | 0; non-zero when a partition reassignment is in progress. |
Incoming byte rate of reassignment traffic | kafka.server:type=BrokerTopicMetrics, name=ReassignmentBytesInPerSec | 0; non-zero when a partition reassignment is in progress. |
Size of a partition on disk (in bytes) | kafka.log:type=Log,name=Size,topic=([-.\w]+),partition=([0-9]+) | The size of a partition on disk, measured in bytes. |
Number of log segments in a partition | kafka.log:type=Log,name=NumLogSegments, topic=([-.\w]+),partition=([0-9]+) | The number of log segments in a partition. |
First offset in a partition | kafka.log:type=Log,name=LogStartOffset, topic=([-.\w]+),partition=([0-9]+) | The first offset in a partition. |
Last offset in a partition | kafka.log:type=Log,name=LogEndOffset, topic=([-.\w]+),partition=([0-9]+) | The last offset in a partition. |
这篇关于Kafka 监控及使用 JMX 进行远程监控的安全注意事项的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!