SPI 和W25Q128(使用SPI通讯读写W25Q128模块)

2024-04-18 03:28

本文主要是介绍SPI 和W25Q128(使用SPI通讯读写W25Q128模块),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SPI 是什么?

SPI 串行外设接口( Serial Peripheral Interface 的缩写,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上 只占用四根线 ,节约了芯片的管脚,同时为PCB 的布局上节省空间,提
供方便,正是出于这种简单易用的特性,越来越多的芯片集成了这种通信协议,比如AT91RM9200

SPI 包含 4 条总线,分别为SSSCKMOSIMISO。它们的作用介绍如下 :

  • MISO – Master Input Slave Output主设备数据输入,从设备数据输出
  • MOSI – Master Output Slave Input主设备数据输出,从设备数据输入
  • SCK – Serial Clock时钟信号,由主设备产生
  • CS – Chip Select片选信号,由主设备控制,拉低就选中

        SPI1_NSS和CS实际上是同一个概念的不同表述,在SPI(Serial Peripheral Interface)接口中,它们均指代“Chip Select”或“Slave Select”信号,有时候也称为NSS(Not Slave Select)。在SPI通信协议中,NSS/CS信号的作用是用来选择与主设备进行数据传输的从设备。

        具体来说,当SPI系统中有多个从设备时,每一个从设备都会连接到一个独立的NSS/CS信号线上。SPI主设备通过控制这些NSS/CS线上的电平变化来选择与哪个从设备进行通信:

  • 当NSS/CS信号线被主设备拉低(置为低电平)时,相应的从设备会被选中并进入工作状态,准备接收或发送数据;
  • 当NSS/CS信号线被主设备释放回到高电平时,所选中的从设备停止数据传输,并退出活动状态。

 

SPI 工作原理 

SPI工作模式

时钟极性(CPOL):

没有数据传输时 时钟线的空闲状态电平

  • 0:SCK (CLK) 在空闲状态保持低电平
  • 1:SCK (CLK) 在空闲状态保持高电平
时钟相位(CPHA):

时钟线在第几个时钟边沿采样数据

  • 0:SCK (CLK) 的第一(奇数)边沿进行数据位采样,数据在第一个时钟边沿被锁存
  • 1:SCK (CLK) 的第二(偶数)边沿进行数据位采样,数据在第二个时钟边沿被锁存

 根据CPOLCPHA的取值组合,共有4种工作模式:

其中:模式 0 和 模式 3 最常用 

模式 0 时序图:

 模式3 时序图:

W25Q128

  STM32单片机初学8-SPI flash(W25Q128)数据读写_w25q128如何读取一个字节-CSDN博客

W25Q128 是华邦公司推出的一款 SPI 接口的 NOR Flash 芯片,其存储空间为 128 Mbit,相当于 16M 字节: (1Byte = 8Bit)

Flash 是常用的用于储存数据的半导体器件,它具有容量大,可重复擦写、按“扇区/块”擦除、掉 电后数据可继续保存的特性。 Flash 的物理特性:只能写 0 ,不能写 1 ,写 1 靠擦除。

W25Q128 存储架构(地址24位)256*16*16*256-1=FFFFFF

上图从左到右分别是: --> 扇区 -->  --> 字节(一般按扇区(4k)进行擦除)

W25Q128 常用指令

W25Q128 全部指令非常多,但常用的如下几个指令:

写使能 (06H)

执行页写,扇区擦除,块擦除,片擦除,写状态寄存器等指令前,需要写使能。

拉低CS片选 → 发送06H → 拉高CS片选

读状态寄存器(05H)

拉低CS片选 → 发送05H→ 返回SR1的值 → 拉高CS片选

读时序(03H)

拉低CS片选 → 发送03H→ 发送24位地址 → 读取数据(1~n) → 拉高CS片选 

页写时序 (02H)

页写命令最多可以向FLASH传输256个字节的数据。

拉低CS片选 → 发送02H→ 发送24位地址 → 发送数据(1~n) → 拉高CS片选 

扇区擦除时序(20H)

写入数据前,检查内存空间是否全部都是 0XFF ,不满足需擦除。

拉低CS片选 → 发送20H→ 发送24位地址 → 拉高CS片选

W25Q128 状态寄存器 

W25Q128 一共有 3 个状态寄存器,它们的作用是跟踪芯片的状态

其中,状态寄存器 1 较为常用:

  • BUSY:指示当前的状态,0 表示空闲,1 表示忙碌
  • WEL:写使能锁定,为 1 时,可以操作页/扇 区/块。为 0 时,写禁止。
W25Q128 常见操作流程

以下流程省略了拉低/拉高片选信号CS!

读操作:

写操作:

擦除扇区: 

实验(使用SPI通讯读写W25Q128模块)

1.接线

        W25Q128与STM32F103C8T6板子接线,在STM32F103C8T6的产品手册中找到板子上的SPI1的接口。

PA4作为SPI1的NSS,PA5作为SPI1的CLK,PA6作为SPI1的DO(MISO),PA7作为SPI1的DI(MOSI)。

VCC -- 3.3V
CS -- PA4
CLK -- PA5
DO -- PA6
DI -- PA7

 2.CubeMx

1.配置

SYS->Debug->Serial Wire

RCC->High Speed Clock(HSE)->Crystal/Ceramic Resonator

时钟树HSE、PLLCLK打开,HCLK设置成72MHz

打开uart1

2.打开SPI

随便选一个引脚输出当CS即可,这里选用PA4,就可以节约主机的NSS模式了

3.Keil

1.打开MicroLIB库
2.移植库文件

将w25q128.h和w25q128.c分别复制到 core->

再将w25q128.c添加进主目录下

 3.编写代码
main.c
#include "stdio.h"
#include "string.h"
#include "w25q128.h"#define  TEXT_SIZE 16
#define  FLASH_WriteAddress     0x00000
#define  FLASH_ReadAddress      FLASH_WriteAddressint main(void)
{uint8_t datatemp[TEXT_SIZE];/* 写入测试数据 */sprintf((char *)datatemp, "5454545");w25q128_write(datatemp, FLASH_WriteAddress, TEXT_SIZE);printf("数据写入完成!\r\n");/* 读出测试数据 */memset(datatemp, 0, TEXT_SIZE);w25q128_read(datatemp, FLASH_ReadAddress, TEXT_SIZE);printf("读出数据:%s\r\n", datatemp);while (1){}}
spi.c
uint8_t spi1_read_write_byte(uint8_t data)
{uint8_t rec_data = 0;HAL_SPI_TransmitReceive(&hspi1, &data, &rec_data, 1, 1000);return rec_data;
}
uart.c
int fputc(int ch, FILE *f)
{      unsigned char temp[1]={ch};HAL_UART_Transmit(&huart1,temp,1,0xffff);  return ch;
}

记得要在相应的.h添加要被调用的函数名,否则会有警告

有空要去看一看,理解一下w25q128.c的代码!!!

 实验结果

这篇关于SPI 和W25Q128(使用SPI通讯读写W25Q128模块)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913645

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

10. 文件的读写

10.1 文本文件 操作文件三大类: ofstream:写操作ifstream:读操作fstream:读写操作 打开方式解释ios::in为了读文件而打开文件ios::out为了写文件而打开文件,如果当前文件存在则清空当前文件在写入ios::app追加方式写文件ios::trunc如果文件存在先删除,在创建ios::ate打开文件之后令读写位置移至文件尾端ios::binary二进制方式

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]