Seaborn:推荐一个好用的Python可视化工具

2024-04-18 03:28

本文主要是介绍Seaborn:推荐一个好用的Python可视化工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 引言

Seaborn 是建立在 matplotlib 基础上的数据可视化库,并与 Python 中的 pandas 数据结构紧密结合。可视化是 Seaborn 的核心部分,有助于直观的理解数据。

闲话少说,我们直接开始吧!

2. 安装

Seaborn库主要提供以下功能:

面向数据集的应用程序接口,用于确定变量之间的关系。
自动估计和绘制线性回归图。
它支持多网格图的高级抽象。

使用Seaborn库,我们可以方便地绘制各种图形。我们可以使用的以下命令进行安装:

pip install seaborn

要初始化 Seaborn 库,一般使用以下命令:

import seaborn as sns

3. 引入数据集

为了展示使用 Seaborn 库进行各种图形的绘制,我们这里使用googleplaystore.csv数据集,大家可以在kaggle网站进行下载。

在继续之前,首先让我们访问一下数据集:

import pandas as pd
import numpy as np
pstore = pd.read_csv("googleplaystore.csv")
pstore.head(10)

数据集的示例如下:

在这里插入图片描述

4. 数据直方分布图

首先,让我们看看上述数据集中第三列 Rating 列即APP评分列的数据直方分布图,代码如下:

#importing all the libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
pstore = pd.read_csv("googleplaystore.csv")
#Create a distribution plot for rating
sns.distplot(pstore.Rating)
plt.show()

运行后得到结果如下:
在这里插入图片描述
观察上图,在直方分布图上绘制的曲线KDE就是近似的概率密度曲线。

5. 参数设置

matplotlib 中的直方图类似,在直方分布图中,我们也可以改变bins 数目,使图形更易于理解。

#Change the number of bins
sns.distplot(inp1.Rating, bins=20, kde=False)
plt.show()

现在,图表看起来是这样的,如下:
在这里插入图片描述
在上图中,我们在代码中设置kde = False 后,运行后没有概率密度曲线。要删除该曲线,只需对变量kde 进行相应设置即可。

6. 控制颜色

我们还可以像matplotlib 一样为直方分布图提供标题和颜色。相关代码如下:

#importing all the libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns#Create a distribution plot for rating
sns.distplot(pstore.Rating, bins=20, color="g")
plt.title("Distribution of app ratings", fontsize=20, color = 'red')
plt.show()

运行后结果如下:
在这里插入图片描述

7. 默认样式

使用 Seaborn 的最大优势之一是,它为我们的图表提供了多种默认样式选项。以下都是 Seaborn 提供的默认样式:

'Solarize_Light2','_classic_test_patch','bmh','classic','dark_background','fast','fivethirtyeight','ggplot','grayscale','seaborn','seaborn-bright','seaborn-colorblind','seaborn-dark','seaborn-dark-palette','seaborn-darkgrid','seaborn-deep','seaborn-muted','seaborn-notebook','seaborn-paper','seaborn-pastel','seaborn-poster','seaborn-talk','seaborn-ticks','seaborn-white','seaborn-whitegrid','tableau-colorblind10'

我们只需编写一行代码,就能将这些样式整合到我们的图表中。

#importing all the libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns#Adding dark background to the graph
plt.style.use("dark_background")#Create a distribution plot for rating
sns.distplot(pstore.Rating, bins=20, color="g")
plt.title("Distribution of app ratings", fontsize=20, color = 'red')
plt.show()

为图表添加深色背景后,分布图看起来就像这样了,如下所示:
在这里插入图片描述

8. 饼图

饼图一般用于分析不同类别中的数据分布。在我们使用的数据集中,我们将分析内容评级列Content Rating 中排名前 4 位的类别的数量。首先,我们将对 "内容评级 "列Content Rating 进行数据清理和挖掘,并统计相应类别的数量。

#importing all the libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns#Analyzing the Content Rating column
count = pstore['Content Rating'].value_counts()
print(count)

得到结果如下:
在这里插入图片描述
根据上述输出结果,由于 Adults only 18+ Unrated 的这两个类别的计数明显少于其他类别,我们将从内容分级中删除这些类别并更新数据集。

#Remove the rows with values which are less represented 
pstore = pstore[~pstore['Content Rating'].isin(["Adults only 18+","Unrated"])]
#Resetting the index
pstore.reset_index(inplace=True, drop=True)
#Analyzing the Content Rating column again
count = pstore['Content Rating'].value_counts()
print(count)

得到结果如下:
在这里插入图片描述
现在,让我们为 上述统计结果绘制相应的饼图,代码如下:

#Plotting a pie chart
plt.figure(figsize=[9,7])
pstore['Content Rating'].value_counts().plot.pie()
plt.show()

运行后得到结果如下:
在这里插入图片描述

9. 柱状图

观察上述代码输出的饼图中,我们无法正确推断类别 Everyone 10+和类别 Mature 17+这两个类别的比例谁大。当这两个类别的数值有些相似时,直接观察饼图很难评估它们之间的差异。

此时,我们可以将上述数据绘制成柱状图来克服这种情况。绘制柱状图的代码如下:

#Plotting a bar chart
plt.figure(figsize=[9,7])
pstore['Content Rating'].value_counts().plot.barh()
plt.show()

运行后如下:
在这里插入图片描述
当然,我们可以给不同类别设置不同颜色,如下:

plt.figure(figsize=[9,7])
pstore['Content Rating'].value_counts().plot.barh(color=["purple","orange","green","pink"])
plt.show()

结果如下:
在这里插入图片描述

10. 总结

本文重点介绍了如何利用Seaborn库绘制数据直方分布图以及饼图和柱状图,并给出了相应的代码示例!

您学废了嘛!

这篇关于Seaborn:推荐一个好用的Python可视化工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913644

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e