力扣哈哈哈哈

2024-04-17 23:20
文章标签 力扣 哈哈哈哈

本文主要是介绍力扣哈哈哈哈,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

public class MyStack {int top;Queue<Integer> q1;Queue<Integer> q2;public MyStack() {q1=new LinkedList<Integer>();q2=new LinkedList<Integer>();}public void push(int x) {q2.offer(x);//offer是入队方法while (!q1.isEmpty()){q2.offer(q1.poll());//poll是出队方法}Queue<Integer> temp;temp=q1;q1=q2;q2=temp;}public int pop() {return q1.poll();}public int top() {return q1.peek();//peek用于检索但不移除队列的头部元素}public boolean empty() {return q1.isEmpty();}
}

public class MyQueue {Deque<Integer> inStack;Deque<Integer> outStack;public MyQueue() {inStack=new ArrayDeque<Integer>();outStack=new ArrayDeque<Integer>();}public void push(int x) {inStack.push(x);}public int pop() {if(outStack.isEmpty()){intooutStack();}return outStack.pop();}public int peek() {if(outStack.isEmpty()){intooutStack();}return outStack.peek();}public boolean empty() {return inStack.isEmpty()&&outStack.isEmpty();}private void intooutStack(){while (!inStack.isEmpty()){outStack.push(inStack.pop());}}
}/*** Your MyQueue object will be instantiated and called as such:* MyQueue obj = new MyQueue();* obj.push(x);* int param_2 = obj.pop();* int param_3 = obj.peek();* boolean param_4 = obj.empty();*/

构造函数 MyQueue(): 初始化了两个栈 inStack 和 outStack,分别用于入队和出队操作。

push(int x) 方法: 将元素 x 入队。直接将元素 x 压入 inStack 栈顶。

pop() 方法: 出队操作,返回队列的头部元素并将其移除。首先检查 outStack 是否为空,如果为空,则调用 intooutStack() 方法将 inStack 中的元素逐个弹出并压入 outStack,然后从 outStack 中弹出一个元素作为出队元素。

peek() 方法: 返回队列的头部元素,但不移除。同样,首先检查 outStack 是否为空,如果为空,则调用 intooutStack() 方法将 inStack 中的元素逐个弹出并压入 outStack,然后返回 outStack 栈顶元素。

empty() 方法: 检查队列是否为空。如果 inStack 和 outStack 都为空,则队列为空。

intooutStack() 方法: 将 inStack 中的元素逐个弹出并压入 outStack。这个方法在执行出队操作时会被调用,确保 outStack 中的元素顺序符合队列的先进先出特性。

class Solution {public int[] maxSlidingWindow(int[] nums, int k) {int n = nums.length;PriorityQueue<int[]> pq = new PriorityQueue<int[]>(new Comparator<int[]>() {public int compare(int[] pair1, int[] pair2) {return pair1[0] != pair2[0] ? pair2[0] - pair1[0] : pair2[1] - pair1[1];}});for (int i = 0; i < k; ++i) {pq.offer(new int[]{nums[i], i});}int[] ans = new int[n - k + 1];ans[0] = pq.peek()[0];for (int i = k; i < n; ++i) {pq.offer(new int[]{nums[i], i});while (pq.peek()[1] <= i - k) {pq.poll();}ans[i - k + 1] = pq.peek()[0];}return ans;}
}

PriorityQueue<int[]> pq = new PriorityQueue<int[]>(new Comparator<int[]>() {
            public int compare(int[] pair1, int[] pair2) {
                return pair1[0] != pair2[0] ? pair2[0] - pair1[0] : pair2[1] - pair1[1];
            }
        });

这段代码创建了一个优先队列 pq,其中存储了整数数组 int[]。在构造优先队列时,通过传入一个自定义的比较器 Comparator<int[]> 来指定元素的比较规则。

比较器中的 compare() 方法定义了元素的比较逻辑。在这个比较器中,首先比较两个元素的第一个元素 pair1[0] 和 pair2[0],如果它们不相等,则按照元素的第一个值从大到小排序,即返回 pair2[0] - pair1[0]。如果第一个元素相等,则继续比较第二个元素 pair1[1] 和 pair2[1],按照第二个元素从大到小排序,即返回 pair2[1] - pair1[1]。

这样定义的比较器保证了优先队列中的元素按照其第一个值从大到小排序,如果第一个值相等,则按照第二个值从大到小排序。这种排序方式可以确保优先队列中的头部元素始终是具有最大值的元素对 [nums[i], i]。

pq.offer(new int[]{nums[i], i});
ChatGPT
在这行代码中,pq.offer(new int[]{nums[i], i}),我们创建了一个整数数组 new int[]{nums[i], i},其中 nums[i] 是当前元素的值,i 是当前元素的索引。然后,我们使用 pq.offer() 方法将这个数组作为一个元素添加到优先队列 pq 中。

这样,每个元素都以 [nums[i], i] 的形式存储在优先队列中,从而实现了按照元素值及其对应的索引进行排序。

对于这行代码 pq.peek()[1] <= i - k,它是在检查当前优先队列头部元素的索引是否小于等于 i - k,如果是,则表示该元素不在当前窗口内。让我来解释一下这行代码的作用:

  • pq.peek():这会返回优先队列 pq 的头部元素,即具有最高优先级的元素,由于我们在构造优先队列时使用了自定义的比较器,头部元素是具有最大值的元素对 [nums[i], i]
  • pq.peek()[1]:这会返回头部元素的索引部分,即 i,这是因为我们将元素对 [nums[i], i] 存入优先队列中,第二个值是元素的索引。
  • i - k:这表示当前窗口的左边界,即当前索引 i 减去窗口的大小 k,这是为了确定当前窗口的范围。

所以,pq.peek()[1] <= i - k 的意思是,如果当前优先队列头部元素的索引小于等于当前窗口的左边界,即头部元素不在当前窗口内,那么我们需要将该元素从队列中弹出。

PriorityQueue 是 Java 中提供的一种优先队列的实现,它是一种特殊的队列,其中的元素被赋予了优先级。在 PriorityQueue 中,元素按照它们的自然顺序或者根据特定的 Comparator 接口进行排序。

  • 当不提供自定义的比较器时,PriorityQueue 将使用元素的自然顺序进行排序。例如,如果队列存储的是整数,则队列将按照整数的大小进行排序,从小到大排列。
  • 当提供了自定义的比较器时,PriorityQueue 将根据指定的比较规则对元素进行排序。

在这段代码中,我们使用了一个自定义的比较器,通过比较元素对 [nums[i], i] 中的第一个值(元素值)来进行排序。如果元素值不相等,则按照元素值从大到小排序;如果元素值相等,则按照第二个值(元素索引)从大到小排序。这样,优先队列中的头部元素始终是具有最大值的元素对 [nums[i], i],从而实现了按照元素值及其对应的索引进行排序。

这段代码是标准的解法,它使用优先队列来解决滑动窗口最大值的问题。让我来逐步解释它的实现:

  1. 初始化

    • 创建了一个优先队列 pq,用于存储当前窗口内的元素,并按照元素值从大到小排序,如果元素值相等,则按照索引从大到小排序。
    • 使用一个循环遍历数组 nums 的前 k 个元素,将它们作为初始窗口,并加入优先队列 pq 中。
  2. 计算窗口最大值

    • 初始化一个长度为 n - k + 1 的数组 ans,用于存储每个窗口的最大值。
    • 将第一个窗口的最大值(即优先队列的头部元素的值)存入 ans 数组的第一个位置。
    • 从第 k 个元素开始遍历数组 nums,并将每个元素加入到优先队列 pq 中。
    • 对于每个窗口:
      • 如果当前优先队列头部元素的索引小于等于 i - k,表示该元素不在当前窗口内,需要将其从队列中弹出。
      • 将当前窗口的最大值存入 ans 数组中。
  3. 返回结果

    • 返回 ans 数组,其中存储了每个窗口的最大值。

这种实现方式利用了优先队列的特性,实现了对滑动窗口内的元素进行快速查找最大值的功能。

这篇关于力扣哈哈哈哈的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913138

相关文章

两数之和--力扣1

两数之和 题目思路C++代码 题目 思路 根据题目要求,元素不能重复且不需要排序,我们这里使用哈希表unordered_map。注意题目说了只对应一种答案。 所以我们在循环中,使用目标值减去当前循环的nums[i],得到差值,如果我们在map中能够找到这个差值,就说明存在两个整数的和为目标值。 如果没有找到,就将当前循环的nums[i]以及下标i放入map中,以便后续查

力扣第347题 前K个高频元素

前言 记录一下刷题历程 力扣第347题 前K个高频元素 前K个高频元素 原题目: 分析 我们首先使用哈希表来统计数字出现的频率,然后我们使用一个桶排序。我们首先定义一个长度为n+1的数组,对于下图这个示例就是长度为7的数组。为什么需要一个长度为n+1的数组呢?假如说总共有三个数字都为1,那么我们需要把这个1放在数组下标为3的位置,假如说数组长度为n,对于这个例子就是长度为3,那么它的

【数据结构与算法 | 灵神题单 | 删除链表篇】力扣3217, 82, 237

总结,删除链表节点问题使用到列表,哈希表,递归比较容易超时,我觉得使用计数排序比较稳,处理起来也不是很难。 1. 力扣3217:从链表中移除在数组中的节点 1.1 题目: 给你一个整数数组 nums 和一个链表的头节点 head。从链表中移除所有存在于 nums 中的节点后,返回修改后的链表的头节点。 示例 1: 输入: nums = [1,2,3], head = [1,2,3,

力扣 739. 每日温度【经典单调栈题目】

1. 题目 理解题意: 1.1. 给一个温度集合, 要返回一个对应长度的结果集合, 这个结果集合里面的元素 i 是 当前 i 位置的元素的下一个更高温度的元素的位置和当前 i 位置的距离之差, 若是当前元素不存在下一个更高温度的元素, 则这个位置用0代替; 2. 思路 本题用单调栈来求解;单调栈就适用于来求当前元素左边或者右边第一个比当前元素大或者小的元素;【单调栈:让栈中的元素保持单调

力扣接雨水

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 示例 1: 输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]输出:6解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。 示例 2: 输入:height

每日一题,力扣leetcode Hot100之238.除自身以外数组的乘积

乍一看这个题很简单,但是不能用除法,并且在O(N)时间复杂度完成或许有点难度。 考虑到不能用除法,如果我们要计算输出结果位置i的值,我们就要获取这个位置左边的乘积和右边的乘积,那么我新设立两个数组L和R。 对于L来说,由于表达的是位置i左边的数的乘积,那么L[0]=1,因为第一个数字左边没数那么为了不影响乘积初始值就设置为1,那么L[1]=L[0]*nums[0],那么L[i]=L[i-1

力扣 797. 所有可能路径【DFS】

1. 题目 2. 代码 DFS , 直接见代码 class Solution {public:vector<int> path;vector<vector<int>> res; // 结果集void dfs(vector<vector<int>>& graph, int cur, int n){// 找出所有从节点 0 到节点 n-1 的路径// 下标从 0 开始的if (

Java中等题-整数替换(力扣)

给定一个正整数 n ,你可以做如下操作: 如果 n 是偶数,则用 n / 2替换 n 。如果 n 是奇数,则可以用 n + 1或n - 1替换 n 。 返回 n 变为 1 所需的 最小替换次数 。 示例 1: 输入:n = 8输出:3解释:8 -> 4 -> 2 -> 1 示例 2: 输入:n = 7输出:4解释:7 -> 8 -> 4 -> 2 -> 1或 7 ->

力扣 | 递归 | 区间上的动态规划 | 486. 预测赢家

文章目录 一、递归二、区间动态规划 LeetCode:486. 预测赢家 一、递归 注意到本题数据范围为 1 < = n < = 20 1<=n<=20 1<=n<=20,因此可以使用递归枚举选择方式,时间复杂度为 2 20 = 1024 ∗ 1024 = 1048576 = 1.05 × 1 0 6 2^{20} = 1024*1024=1048576=1.05 × 10^

每日一题,力扣leetcode Hot100之198.打家劫舍

这一道题乍一看可以双层循环暴力解,但是仔细一想有可能最大利益并不是一家隔着一家偷,我可以间隔很多家偷,所以 这个题的思路还是有点像爬楼梯,用动态规划解。 首先确立动态规划的初始条件: 1.dp[0]=nums[0]只有一家 2.dp[1]=max(nums[0],nums[1])有两家选一家多的 然后确立动态规划的循环条件: dp[i]应该是什么 1.第i家能拿,那么dp[i]=n