Python玩街机

2024-04-17 08:08
文章标签 python 街机

本文主要是介绍Python玩街机,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来源:GitHub

编译:Bot

编者按:近年来,虽然关于强化学习进展的新闻屡见报端,对强化学习感兴趣的人也很多,但对普通学习者来说,真正做一个自己感兴趣的强化学习项目还是太麻烦了。今天论智给大家推荐的是一名网友开源的Python库,它提供了一个可以玩任何旧版街机游戏的API,操作方式非常亲民。

640?

这是一个允许你在几乎任何街机游戏中训练你的强化学习算法的Python库,它目前在Linux系统上可用。通过这个工具包,你可以定制算法逐步完成游戏过程,同时接收每一帧的数据和内部存储器地址值以跟踪游戏状态,以及发送与游戏交互的动作。

安装

GitHub地址:github.com/M-J-Murray/MAMEToolkit/blob/master/README.md

你可以用pip安装这个库,只需运行以下命令:

pip install MAMEToolkit

演示示例:街霸

在街机爱好者心中,街霸是史上最经典的游戏之一。现在工具包内包含的街霸版本是街头霸王3:三度冲击(Japan 990608, NO CD),我们以此为例,用以下代码写一个随机智能体:

import random	
from MAMEToolkit.sf_environment import Environment	roms_path = "roms/"	
env = Environment("env1", roms_path)	
env.start()	
while True:	move_action = random.randint(0, 8)	attack_action = random.randint(0, 9)	frames, reward, round_done, stage_done, game_done = env.step(move_action, attack_action)	if game_done:	env.new_game()	elif stage_done:	env.next_stage()	elif round_done:	env.next_round()

这个工具包还支持hogwild!训练:

什么是hogwild!? Niu等人引入了一个叫做 Hogwild! 的更新策略,可以使 SGD 可以在多 CPU 上并行更新。处理器在无需对参数加锁的情况下就可以访问共享内存。但仅在输入的是稀疏数据时才有效,因为每次更新仅修改所有参数的一小部分。他们展示了在这种情况下,更新策略几乎可以达到一个最优的收敛率,因为处理器不太可能覆盖掉有用的信息。

from threading import Thread	
import random	
from MAMEToolkit.sf_environment import Environment	def run_env(env):	env.start()	while True:	move_action = random.randint(0, 8)	attack_action = random.randint(0, 9)	frames, reward, round_done, stage_done, game_done = env.step(move_action, attack_action)	if game_done:	env.new_game()	elif stage_done:	env.next_stage()	elif round_done:	env.next_round()	def main():	workers = 8	# Environments must be created outside of the threads	roms_path = "roms/"	envs = [Environment(f"env{i}", roms_path) for i in range(workers)]	threads = [Thread(target=run_env, args=(envs[i], )) for i in range(workers)]	[thread.start() for thread in threads]

建立自己的游戏环境

这个工具包之所以易于上手,是因为它和模拟器本身不需要太多交互,只需注意两点——一是查找你关注的内部状态相关联的内存地址值,二是用选取的环境跟踪状态。你可以用MAME Cheat Debugger,它会反馈游戏的内存地址值如何随时间变化。如果要创建游戏模拟,你得先获得正在模拟的游戏的ROM,并知道MAME使用的游戏ID,比如街霸的ID是'sfiii3n'。

游戏ID

你可以通过运行以下代码找到游戏的ID:

from MAMEToolkit.emulator import Emulator	
emulator = Emulator("env1", "", "", memory_addresses)

这个命令会打开MAME仿真器。你可以搜索游戏列表以找到想要的游戏,游戏的ID位于游戏标题末尾的括号中。

内存地址

如果获得了ID,也有了想要跟踪的内存地址,你可以开始模拟:

from MAMEToolkit.emulator import Emulator	
from MAMEToolkit.emulator import Address	roms_path = "roms/"	
game_id = "sfiii3n"	
memory_addresses = {	"fighting": Address('0x0200EE44', 'u8'),	"winsP1": Address('0x02011383', 'u8'),	"winsP2": Address('0x02011385', 'u8'),	"healthP1": Address('0x02068D0B', 's8'),	"healthP2": Address('0x020691A3', 's8')	}	emulator = Emulator("env1", roms_path, "sfiii3n", memory_addresses)

这会启动仿真器,并在工具包连接到模拟器进程时暂停。

分步运行仿真器

连接工具箱后,你可以分步运行仿真器:

data = emulator.step([])	frame = data["frame"]	
is_fighting = data["fighting"]	
player1_wins = data["winsP1"]	
player2_wins = data["winsP2"]	
player1_health = data["healthP1"]	
player2_health = data["healthP2"]

step函数会把帧数据作为NumPy矩阵返回,同时,它也会返回该时间步长的所有内存地址整数值。

如果要向仿真器输入动作,你还需要确定游戏支持的输入端口和字段。比如玩街霸需要先投币,这个代码是:

from MAMEToolkit.emulator import Action	insert_coin = Action(':INPUTS', 'Coin 1')	
data = emulator.step([insert_coin])

要确定哪些端口可用,请使用list actions命令:

from MAMEToolkit.emulator import list_actions	roms_path = "roms/"	
game_id = "sfiii3n"	
print(list_actions(roms_path, game_id))

下面这个返回的列表就包含街霸环境中可用于向步骤函数发送动作的所有端口和字段:

[	{'port': ':scsi:1:cdrom:SCSI_ID', 'field': 'SCSI ID'}, 	{'port': ':INPUTS', 'field': 'P2 Jab Punch'}, 	{'port': ':INPUTS', 'field': 'P1 Left'}, 	{'port': ':INPUTS', 'field': 'P2 Fierce Punch'}, 	{'port': ':INPUTS', 'field': 'P1 Down'}, 	{'port': ':INPUTS', 'field': 'P2 Down'}, 	{'port': ':INPUTS', 'field': 'P2 Roundhouse Kick'}, 	{'port': ':INPUTS', 'field': 'P2 Strong Punch'}, 	{'port': ':INPUTS', 'field': 'P1 Strong Punch'}, 	{'port': ':INPUTS', 'field': '2 Players Start'}, 	{'port': ':INPUTS', 'field': 'Coin 1'}, 	{'port': ':INPUTS', 'field': '1 Player Start'}, 	{'port': ':INPUTS', 'field': 'P2 Right'}, 	{'port': ':INPUTS', 'field': 'Service 1'}, 	{'port': ':INPUTS', 'field': 'Coin 2'}, 	{'port': ':INPUTS', 'field': 'P1 Jab Punch'}, 	{'port': ':INPUTS', 'field': 'P2 Up'}, 	{'port': ':INPUTS', 'field': 'P1 Up'}, 	{'port': ':INPUTS', 'field': 'P1 Right'}, 	{'port': ':INPUTS', 'field': 'Service Mode'}, 	{'port': ':INPUTS', 'field': 'P1 Fierce Punch'}, 	{'port': ':INPUTS', 'field': 'P2 Left'}, 	{'port': ':EXTRA', 'field': 'P2 Short Kick'}, 	{'port': ':EXTRA', 'field': 'P2 Forward Kick'}, 	{'port': ':EXTRA', 'field': 'P1 Forward Kick'}, 	{'port': ':EXTRA', 'field': 'P1 Roundhouse Kick'}, 	{'port': ':EXTRA', 'field': 'P1 Short Kick'}	
]

仿真器类还有一个frame_ratio参数,可用于调整算法所见的帧速率。默认情况下,MAME以每秒60帧的速度生成帧,如果你觉得这太多了,想把它改成每秒20帧,可以输入以下代码:

from MAMEToolkit.emulator import Emulator	emulator = Emulator(roms_path, game_id, memory_addresses, frame_ratio=3)

MAME性能基准测试

目前这个工具包的开发和测试已在8核AMD FX-8300 3.3GHz CPU以及3GB GeForce GTX 1060 GPU上完成。在使用单个随机智能体的情况下,街头霸王环境可以以正常游戏速度的600%+运行。而如果是用8个随机智能体进行hogwild!训练,环境可以以正常游戏速度的300%+运行。

ConvNet智能体

为了确保工具包能够训练算法,作者还设置了一个简单的5层ConvNet,只需少量调整,你就可以用它进行测试。在街霸实验中,这个算法能够成功学习到游戏的一些简单技巧,比如连击(combo)和格挡(blocking)。街霸本身的游戏机制是分成10个关卡(难度递增),玩家在每个关卡都要迎战不同的对手。刚开始的时候,这个智能体平均只能打到第2关。但在经过2200次训练后,它平均能打到第5关。

至于智能体的学习率,它是用每一局智能体所造成的净伤害和所承受的伤害来计算的。

640?

640?wx_fmt=gif

Pls Follow It!

这篇关于Python玩街机的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/911247

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

【Python报错已解决】AttributeError: ‘list‘ object has no attribute ‘text‘

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 前言一、问题描述1.1 报错示例1.2 报错分析1.3 解决思路 二、解决方法2.1 方法一:检查属性名2.2 步骤二:访问列表元素的属性 三、其他解决方法四、总结 前言 在Python编程中,属性错误(At