Asyncio---Python牛不牛就靠你了

2024-04-17 07:58

本文主要是介绍Asyncio---Python牛不牛就靠你了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前在看gevent的时候不小心又看到了这个模块,gevent其实并不是python官方的标准库,有一些缺陷,所以这个时候Asyncio出现了。

这是官网也非常推荐的一个实现高并发的一个模块。在python3.6中已经稳定支持了。

640?wx_fmt=other

首先要做的事情:

Asyncio是干嘛的?

异步,并发,协程

CPU 的执行是顺序的,线程是操作系统提供的一种机制,允许我们在操作系统的层面上实现“并行”。而协程则可以认为是应用程序提供的一种机制(用户或库来完成),允许我们在应用程序的层面上实现“并行”。

由于本质上程序是顺序执行的,要实现这种“并行”的假像,我们需要一种机制,来“暂停”当前的执行流,并在之后“恢复”之前的执行流。这在操作系统及多线程/多进程中称为“上下文切换” (context switch)。其中“上下文”记录了某个线程执行的状态,包括线程里用到的各个变量,线程的调用栈等。而“切换”指的就是保存某个线程当前的运行状态,之后再从之前的状态中恢复。只不过线程相关的工作是由操作系统完成,而协程则是由应用程序自己来完成。


关于asyncio,有很多的模块支持,如图(一部分):

640?wx_fmt=png

详情可参考:

https://github.com/aio-libs

下面来介绍一下Asyncio里面可等待的对象(可等待的对象的意思就是可以在await方法中进行使用)一共分为以下三种:

coroutine (协程):

协程对象,指一个使用async关键字定义的函数,它的调用不会立即执行函数,而是会返回一个协程对象。协程对象需要注册到事件循环,由事件循环调用。

task (任务):

用来设置日程,以便并发执行协程,是对协程进一步封装,其中包含了任务的各种状态。

future(最终结果):

是一种特殊的 低层级 可等待对象,表示一个异步操作的最终结果。



Coroutine 

关于协程,一般通过async/await方法进行声明定义,来看一个最基本的例子,在hello输出1秒后输出world。

import asyncio

async def main():
print('hello')
await asyncio.sleep(1)
print('world')


以上就是定义一个简单的协程方法,定义好来就可以运行,关于运行,我们有三种方法可以调用(代表三种不同的运行机制),他们分别是:run,await,create_task


Run函数

asyncio.run(coro, *, debug=False)

run函数运行传入的协程,负责管理 asyncio 事件循环并完结异步生成器。

当有其他 asyncio 事件循环在同一线程中运行时,run函数不能被调用。

如果 debug 为 True,事件循环将以调试模式运行。

run函数总是会创建一个新的事件循环并在结束时关闭。它应当被用作 asyncio 程序的主入口点,理想情况下应当只被调用一次。也就是说,run函数里面的第一个参数应该是main函数。


Create_task函数

asyncio.create_task(coro)

将 coro 协程打包成一个 Task排入日程准备执行。返回 一个Task 对象。

该任务会在 get_running_loop() 返回的循环中执行,如果当前线程没有在运行的循环则会引发 RuntimeError。


await

await用于挂起阻塞的异步调用接口。

await可以针对耗时的操作进行挂起,就像生成器里的yield一样,函数让出控制权。协程遇到await,事件循环将会挂起该协程,执行别的协程,直到其他的协程也挂起或者执行完毕,再进行下一个协程的执行。

async def do_some_work(x):
print("waiting:",x)
# await 后面就是调用耗时的操作
await asyncio.sleep(x)
return "Done after {}s".format(x)



Future

Future 是一种特殊的可等待对象,表示一个异步操作的最终结果。

当一个 Future 对象 被等待,这意味着协程将保持等待直到该 Future 对象在其他地方操作完毕。

在 asyncio 中需要 Future 对象以便允许通过 async/await 使用基于回调的代码。

通常情况是不需要创建Future的代码的。
future会在api中用到,用户可在api中查看。

async def main():
await function_that_returns_a_future_object()

# this is also valid:
await asyncio.gather(
function_that_returns_a_future_object(),
some_python_coroutine()
)


Task

协程对象不能直接运行,在注册事件循环的时候,其实是run_until_complete方法将协程包装成为了一个任务(task)对象. task对象是Future类的子类,保存了协程运行后的状态,用于未来获取协程的结果。

task和future类似,可以运行协程。

Task 对象被用来在事件循环中运行协程。如果一个协程在等待一个 Future 对象,Task 对象会挂起该协程的执行并等待该 Future 对象完成。当该 Future 对象 完成,被打包的协程将恢复执行。

运行机制:一个事件循环每次运行一个 Task 对象。一个 Task 对象会等待一个 Future 对象完成,该事件循环会运行其他 Task、回调或执行 IO 操作。

创建Task:

import asyncio
import time

now = lambda: time.time()

async def do_some_work(x):
print("waiting:", x)

start = now()

coroutine = do_some_work(2)
loop = asyncio.get_event_loop()
task = loop.create_task(coroutine)
print(task)
loop.run_until_complete(task)
print(task)
print("Time:",now()-start)



关于阻塞

使用async可以定义协程对象,使用await可以针对耗时的操作进行挂起,就像生成器里的yield一样,函数让出控制权。协程遇到await,事件循环将会挂起该协程,执行别的协程,直到其他的协程也挂起或者执行完毕,再进行下一个协程的执行

耗时的操作一般是一些IO操作,例如网络请求,文件读取等。我们使用asyncio.sleep函数来模拟IO操作。协程的目的也是让这些IO操作异步化。

import asyncio
import time

now = lambda :time.time()

async def do_some_work(x):
print("waiting:",x)
# await 后面就是调用耗时的操作
await asyncio.sleep(x)
return "Done after {}s".format(x)

start = now()

coroutine = do_some_work(2)
loop = asyncio.get_event_loop()
task = asyncio.ensure_future(coroutine)
loop.run_until_complete(task)

print("Task ret:", task.result())
print("Time:", now() - start)


代码里的sleep,模拟了阻塞或者耗时操作,这个时候就会让出控制权。 即当遇到阻塞调用的函数的时候,使用await方法将协程的控制权让出,以便loop调用其他的协程。


关于并发

简而言之就是有多个任务需要同时进行,这个时候就相当于我在同一时刻需要完成多个任务。可以看看下面这个例子:

import asyncio
import time

now = lambda :time.time()
# 定义协程方法
async def do_work(x):
print("Waiting:",x)
await asyncio.sleep(x)
return "Done after {}s".format(x)

start = now()
# 实例协程
coroutine1 = do_work(1)
coroutine2 = do_work(2)
coroutine3 = do_work(4)
# 协程的最终结果
tasks = [
asyncio.ensure_future(coroutine1),
asyncio.ensure_future(coroutine2),
asyncio.ensure_future(coroutine3)
]
# 最先调用get_event_loop,开启协程的入口
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))

for task in tasks:
print("Task ret:",task.result())
# 耗时
print("Use Time:",now()-start)


运行代码,我们可以看到运行的结果大概在4点几秒,小于七秒,如果是同步执行,我的最终耗时至少为1+2+4=7s,如果使用异步并发,总耗时接近在4s,4s的阻塞时间,足够前面两个协程执行完毕。这就是协程的并发使用。



关于协程还有很多的知识点,在这里只是管中窥豹,如果想要了解更多的内容,可以访问:

https://docs.python.org/zh-cn/3/library/asyncio-task.html#asyncio.gather



640?wx_fmt=gif

“扫一扫,获取新知识”


这篇关于Asyncio---Python牛不牛就靠你了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/911222

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

【Python报错已解决】AttributeError: ‘list‘ object has no attribute ‘text‘

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 前言一、问题描述1.1 报错示例1.2 报错分析1.3 解决思路 二、解决方法2.1 方法一:检查属性名2.2 步骤二:访问列表元素的属性 三、其他解决方法四、总结 前言 在Python编程中,属性错误(At