温湿度传感器(DHT11)以及光照强度传感器(BH1750)的使用

2024-04-16 12:28

本文主要是介绍温湿度传感器(DHT11)以及光照强度传感器(BH1750)的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

对于一些单片机类的环境检测或者智能家居小项目中,温湿度传感器(DHT11)以及光照强度传感器(BH1750)往往是必不可少的两个外设,下面我们来剖析这两个外设的原理,以及使用。

1. 温湿度传感器(DHT11)

1.1 DHT11介绍

DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器。对于温度的测量范围为0到50℃,能测量的湿度范围为20~95%RH。
在这里插入图片描述
如上图所示,DTH11传感器一般有3线制和4线制两种类型,本次以3线制传感器为例进行说明,4线制传感器请参考商家提供的使用手册。对于3线制在接线上有:

  • VCC外接3.3-5V电源
  • GND外接GND
  • DATA小板开关数字量输出接口接单片机IO口

1.2 串行接口(单线双向)

DHT11的DATA口用于与单片机的通讯和同步,采用单总线数据格式,一次通讯时间为4ms左右,数据分为小数部分和整数部分,具体格式在下面说明,当前小数部分用于以后拓展,现读出为0。操作流程如下:
一次完整的数据传输为40bit,高位先出,数据格式为:

  • 8bit湿度整数数据 + 8bit湿度小数数据
  • 8bit温度整数数据 + 8bir温度小数数据
  • 8bit校验和
    数据传送正确是校验和数据等于“8bit湿度整数数据 + 8bit湿度小数数据+8bit温度整数数据 + 8bir温度小数数据 的低8bit等于8bit校验和 ”。
    例子:
    接收40位bit数据如下:
0000 00100000 00100000 00010000 00010000 0111
湿度高8位湿度低8位温度高8位温度低8位校验和

例如:0000 0001+0000 0010+0011 0001+0000 0010=0000 0111

二进制湿度数据0000 0010 0000 0010==>转化为十进制:514,除于10即为湿度值;
即湿度=51.4%RH

二进制温度数据0000 0001 0000 0010==>转化为十进制:258,除于10即为湿度值;
即温度=25.8℃

当温度低于0℃时温度数据的最高位置1
例如:-34.1℃表示为 0000 0001 0101 0101

1.3 通信过程

  1. 用户MCU发送一次开始信号后,DHT11从低功耗模式转换到高速模式,等待主机开始信号结束后,DHT11发送响应信号,送出40bit的数据,并触发一次信号采集,用户可选择读取部分数据。从模式下,DHT11接收到开始信号触发一次温湿度采集,如果没有接收到主机发送开始信号,DHT11不会主动进行温湿度采集。采集数据后转换到低速模式。
    在这里插入图片描述
  2. 总线空闲状态为高电平,主机把总线拉低等待DHT11响应,主机把总线拉低必须大于18毫秒,保证DHT11能检测到起始信号。DHT11接收到主机的开始信号后,等待主机开始信号结束,然后发送80us低电平响应信号。主机发送开始信号结束后,延时等待20-40us后,读取DHT11的响应信号,主机发送开始信号后,可以切换到输入模式,或者输出高电平均可,总线由上拉电阻拉高。
    在这里插入图片描述
  3. 总线为低电平,说明DHT11发送响应信号,DHT11发送响应信号后,再把总线拉高80us,准备发送数据,每一bit数据都以50us低电平时隙开始,高电平的长短决定了数据位是0还是1。格式如下图所示。如果读取响应信号为高电平,则DHT11没有响应,请检查线路是否连接正常。当最后一bit数据传送完毕后,DHT11拉低总线50us,随后总线由上拉电阻拉高进入空闲状态。
    数字0信号表示
    在这里插入图片描述
    数字1信号表示:
    在这里插入图片描述

1.4 DHT11代码实现

DHT11.c来源于正点原子,感谢正点原子。

#include "dht11.h"
#include "Delay.h"//	 
//本程序只供学习使用,未经作者许可,不得用于其它任何用途
//ALIENTEK精英STM32开发板
//DHT11数字温湿度传感器驱动代码	   
//正点原子@ALIENTEK
//技术论坛:www.openedv.com
//修改日期:2012/9/12
//版本:V1.0
//版权所有,盗版必究。
//Copyright(C) 广州市星翼电子科技有限公司 2009-2019
//All rights reserved									  
////复位DHT11
void DHT11_Rst(void)	   
{                 DHT11_IO_OUT(); 	//SET OUTPUTDHT11_DQ_OUT=0; 	//拉低DQDelay_ms(20);    	//拉低至少18msDHT11_DQ_OUT=1; 	//DQ=1 Delay_us(30);     	//主机拉高20~40us
}
//等待DHT11的回应
//返回1:未检测到DHT11的存在
//返回0:存在
u8 DHT11_Check(void) 	   
{   u8 retry=0;DHT11_IO_IN();//SET INPUT	 while (DHT11_DQ_IN&&retry<100)//DHT11会拉低40~80us{retry++;Delay_us(1);};	 if(retry>=100)return 1;else retry=0;while (!DHT11_DQ_IN&&retry<100)//DHT11拉低后会再次拉高40~80us{retry++;Delay_us(1);};if(retry>=100)return 1;	    return 0;
}
//从DHT11读取一个位
//返回值:1/0
u8 DHT11_Read_Bit(void) 			 
{u8 retry=0;while(DHT11_DQ_IN&&retry<100)//等待变为低电平{retry++;Delay_us(1);}retry=0;while(!DHT11_DQ_IN&&retry<100)//等待变高电平{retry++;Delay_us(1);}Delay_us(40);//等待40usif(DHT11_DQ_IN)return 1;else return 0;		   
}
//从DHT11读取一个字节
//返回值:读到的数据
u8 DHT11_Read_Byte(void)    
{        u8 i,dat;dat=0;for (i=0;i<8;i++) {dat<<=1; dat|=DHT11_Read_Bit();}						    return dat;
}
//从DHT11读取一次数据
//temp:温度值(范围:0~50°)
//humi:湿度值(范围:20%~90%)
//返回值:0,正常;1,读取失败
u8 DHT11_Read_Data(u8 *temp,u8 *humi)    
{        u8 buf[5];u8 i;DHT11_Rst();if(DHT11_Check()==0){for(i=0;i<5;i++)//读取40位数据{buf[i]=DHT11_Read_Byte();}if((buf[0]+buf[1]+buf[2]+buf[3])==buf[4]){*humi=buf[0];*temp=buf[2];}}else return 1;return 0;	    
}
//初始化DHT11的IO口 DQ 同时检测DHT11的存在
//返回1:不存在
//返回0:存在    	 
u8 DHT11_Init(void)
{	 GPIO_InitTypeDef  GPIO_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);	 //使能PG端口时钟GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;				 //PG11端口配置GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 		 //推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);				 //初始化IO口GPIO_SetBits(GPIOB,GPIO_Pin_11);						 //PG11 输出高DHT11_Rst();  //复位DHT11return DHT11_Check();//等待DHT11的回应
} 

DHT11.h同样来源于正点原子

#ifndef __DHT11_H
#define __DHT11_H 
#include "sys.h"   
//	 
//本程序只供学习使用,未经作者许可,不得用于其它任何用途
//ALIENTEK战舰STM32开发板
//DHT11数字温湿度传感器驱动代码	   
//正点原子@ALIENTEK
//技术论坛:www.openedv.com
//修改日期:2012/9/12
//版本:V1.0
//版权所有,盗版必究。
//Copyright(C) 广州市星翼电子科技有限公司 2009-2019
//All rights reserved									  
////IO方向设置
#define DHT11_IO_IN()  {GPIOB->CRH&=0XFFFF0FFF;GPIOB->CRH|=8<<12;}
#define DHT11_IO_OUT() {GPIOB->CRH&=0XFFFF0FFF;GPIOB->CRH|=3<<12;}
IO操作函数											   
#define	DHT11_DQ_OUT PBout(11) //数据端口	PA0 
#define	DHT11_DQ_IN  PBin(11)  //数据端口	PA0 u8 DHT11_Init(void);//初始化DHT11
u8 DHT11_Read_Data(u8 *temp,u8 *humi);//读取温湿度
u8 DHT11_Read_Byte(void);//读出一个字节
u8 DHT11_Read_Bit(void);//读出一个位
u8 DHT11_Check(void);//检测是否存在DHT11
void DHT11_Rst(void);//复位DHT11    
#endif

2 光强度传感器(BH1750)

2.1 BH1750介绍

BH1750是一种用于两线式串行总线接口的数字型光强度传感器集成电路。所能测量的范围为1~65535Lx。最小误差变动 ± 20 % \pm20\% ±20%。且受红外线的影响很小。
图片来源于淘宝“JXINW旗舰店”
该传感器的管教定义如上所示。

名称注释
GND电源地
VCC电源(3.3~5v)
SCLIIC的时钟线
SDAIIC的数据线
ADDR设备地址引脚(空着)

2.1 BH1750代码实现

bh1750.c

#include "bh1750.h"/*应用说明:在访问I2C设备前,请先调用 i2c_CheckDevice() 检测I2C设备是否正常,该函数会配置GPIO
*/static void I2C_BH1750_GPIOConfig(void);/*
*********************************************************************************************************
* 函 数 名: i2c_Delay
* 功能说明: I2C总线位延迟,最快400KHz
* 形    参:无
* 返 回 值: 无
*********************************************************************************************************
*/
static void i2c_Delay(void)
{uint8_t i;/* 下面的时间是通过逻辑分析仪测试得到的。工作条件:CPU主频72MHz ,MDK编译环境,1级优化循环次数为10时,SCL频率 = 205KHz  循环次数为7时,SCL频率 = 347KHz, SCL高电平时间1.5us,SCL低电平时间2.87us 循环次数为5时,SCL频率 = 421KHz, SCL高电平时间1.25us,SCL低电平时间2.375us */for (i = 0; i < 10; i++);
}
/*
*********************************************************************************************************
* 函 数 名: i2c_Start
* 功能说明: CPU发起I2C总线启动信号
* 形    参:无
* 返 回 值: 无
*********************************************************************************************************
*/
void i2c_Start(void)
{/* 当SCL高电平时,SDA出现一个下跳沿表示I2C总线启动信号 */BH1750_I2C_SDA_1();BH1750_I2C_SCL_1();i2c_Delay();BH1750_I2C_SDA_0();i2c_Delay();BH1750_I2C_SCL_0();i2c_Delay();
}
/*
*********************************************************************************************************
* 函 数 名: i2c_Start
* 功能说明: CPU发起I2C总线停止信号
* 形    参:无
* 返 回 值: 无
*********************************************************************************************************
*/
void i2c_Stop(void)
{/* 当SCL高电平时,SDA出现一个上跳沿表示I2C总线停止信号 */BH1750_I2C_SDA_0();BH1750_I2C_SCL_1();i2c_Delay();BH1750_I2C_SDA_1();
}
/*
*********************************************************************************************************
* 函 数 名: i2c_SendByte
* 功能说明: CPU向I2C总线设备发送8bit数据
* 形    参:_ucByte : 等待发送的字节
* 返 回 值: 无
*********************************************************************************************************
*/
void i2c_SendByte(uint8_t _ucByte)
{uint8_t i;/* 先发送字节的高位bit7 */for (i = 0; i < 8; i++){   if (_ucByte & 0x80){BH1750_I2C_SDA_1();}else{BH1750_I2C_SDA_0();}i2c_Delay();BH1750_I2C_SCL_1();i2c_Delay();  BH1750_I2C_SCL_0();if (i == 7){BH1750_I2C_SDA_1(); // 释放总线}_ucByte <<= 1;  /* 左移一个bit */i2c_Delay();}
}
/*
*********************************************************************************************************
* 函 数 名: i2c_ReadByte
* 功能说明: CPU从I2C总线设备读取8bit数据
* 形    参:无
* 返 回 值: 读到的数据
*********************************************************************************************************
*/
uint8_t i2c_ReadByte(void)
{uint8_t i;uint8_t value;/* 读到第1个bit为数据的bit7 */value = 0;for (i = 0; i < 8; i++){value <<= 1;BH1750_I2C_SCL_1();i2c_Delay();if (BH1750_I2C_SDA_READ()){value++;}BH1750_I2C_SCL_0();i2c_Delay();}return value;
}
/*
*********************************************************************************************************
* 函 数 名: i2c_WaitAck
* 功能说明: CPU产生一个时钟,并读取器件的ACK应答信号
* 形    参:无
* 返 回 值: 返回0表示正确应答,1表示无器件响应
*********************************************************************************************************
*/
uint8_t i2c_WaitAck(void)
{uint8_t re;BH1750_I2C_SDA_1(); /* CPU释放SDA总线 */i2c_Delay();BH1750_I2C_SCL_1(); /* CPU驱动SCL = 1, 此时器件会返回ACK应答 */i2c_Delay();if (BH1750_I2C_SDA_READ())  /* CPU读取SDA口线状态 */re = 1;elsere = 0;BH1750_I2C_SCL_0();i2c_Delay();return re;
}
/*
*********************************************************************************************************
* 函 数 名: i2c_Ack
* 功能说明: CPU产生一个ACK信号
* 形    参:无
* 返 回 值: 无
*********************************************************************************************************
*/
void i2c_Ack(void)
{BH1750_I2C_SDA_0(); /* CPU驱动SDA = 0 */i2c_Delay();BH1750_I2C_SCL_1(); /* CPU产生1个时钟 */i2c_Delay();BH1750_I2C_SCL_0();i2c_Delay();BH1750_I2C_SDA_1(); /* CPU释放SDA总线 */
}
/*
*********************************************************************************************************
* 函 数 名: i2c_NAck
* 功能说明: CPU产生1个NACK信号
* 形    参:无
* 返 回 值: 无
*********************************************************************************************************
*/
void i2c_NAck(void)
{BH1750_I2C_SDA_1(); /* CPU驱动SDA = 1 */i2c_Delay();BH1750_I2C_SCL_1(); /* CPU产生1个时钟 */i2c_Delay();BH1750_I2C_SCL_0();i2c_Delay();  
}
/*
*********************************************************************************************************
* 函 数 名: I2C_BH1750_GPIOConfig
* 功能说明: 配置I2C总线的GPIO,采用模拟IO的方式实现
* 形    参:无
* 返 回 值: 无
*********************************************************************************************************
*/
static void I2C_BH1750_GPIOConfig(void)
{GPIO_InitTypeDef GPIO_InitStructure;RCC_APB2PeriphClockCmd(BH1750_RCC_I2C_PORT, ENABLE);  /* 打开GPIO时钟 */GPIO_InitStructure.GPIO_Pin = BH1750_I2C_SCL_PIN | BH1750_I2C_SDA_PIN;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;    /* 开漏输出 */GPIO_Init(BH1750_GPIO_PORT_I2C, &GPIO_InitStructure);/* 给一个停止信号, 复位I2C总线上的所有设备到待机模式 */i2c_Stop();
}
/*
*********************************************************************************************************
* 函 数 名: i2c_CheckDevice
* 功能说明: 检测I2C总线设备,CPU向发送设备地址,然后读取设备应答来判断该设备是否存在
* 形    参:_Address:设备的I2C总线地址
* 返 回 值: 返回值 0 表示正确, 返回1表示未探测到
*********************************************************************************************************
*/
uint8_t i2c_CheckDevice(uint8_t _Address)
{uint8_t ucAck;i2c_Start();    /* 发送启动信号 *//* 发送设备地址+读写控制bit(0 = w, 1 = r) bit7 先传 */i2c_SendByte(_Address | BH1750_I2C_WR);ucAck = i2c_WaitAck();  /* 检测设备的ACK应答 */i2c_Stop();     /* 发送停止信号 */return ucAck;
}
//BH1750写一个字节
//返回值 成功:0    失败:非0 
uint8_t BH1750_Byte_Write(uint8_t data)
{i2c_Start();//发送写地址i2c_SendByte(BH1750_Addr|0);if(i2c_WaitAck()==1)return 1;//发送控制命令i2c_SendByte(data);if(i2c_WaitAck()==1)return 2;i2c_Stop();return 0;
}
//BH1750读取测量数据
//返回值 成功:返回光照强度   失败:返回0
uint16_t BH1750_Read_Measure(void)
{uint16_t receive_data=0; i2c_Start();//发送读地址i2c_SendByte(BH1750_Addr|1);if(i2c_WaitAck()==1)return 0;//读取高八位receive_data=i2c_ReadByte();i2c_Ack();//读取低八位receive_data=(receive_data<<8)+i2c_ReadByte();i2c_NAck();i2c_Stop();return receive_data;  //返回读取到的数据
}//BH1750s上电
void BH1750_Power_ON(void)
{BH1750_Byte_Write(POWER_ON);
}
//BH1750s断电
void BH1750_Power_OFF(void)
{BH1750_Byte_Write(POWER_OFF);
}
//BH1750复位  仅在上电时有效
void BH1750_RESET(void)
{BH1750_Byte_Write(MODULE_RESET);
}//BH1750初始化
uint8_t BH1750_Init(void)
{I2C_BH1750_GPIOConfig();    /* 配置GPIO */BH1750_Power_ON();  //BH1750s上电//BH1750_RESET();     //BH1750复位return BH1750_Byte_Write(Measure_Mode);//SysTick_Delay_ms(120);
}
//获取光照强度
int LIght_Intensity(void)
{float v;v = (float)(BH1750_Read_Measure()/1.1f*Resolurtion);return (int) v;
}

bh1750.h

#ifndef __BH1750_H
#define __BH1750_H   
#include "stm32f10x.h"
//BH1750的地址
#define BH1750_Addr       0x46//0x46//BH1750指令码
#define POWER_OFF         0x00
#define POWER_ON          0x01
#define MODULE_RESET      0x07
#define CONTINUE_H_MODE   0x10
#define CONTINUE_H_MODE2  0x11
#define CONTINUE_L_MODE   0x13
#define ONE_TIME_H_MODE   0x20
#define ONE_TIME_H_MODE2  0x21
#define ONE_TIME_L_MODE   0x23//测量模式
#define Measure_Mode      CONTINUE_H_MODE//分辨率 光照强度(单位lx)=(High Byte  + Low Byte)/ 1.2 * 测量精度
#if ((Measure_Mode==CONTINUE_H_MODE2)|(Measure_Mode==ONE_TIME_H_MODE2))#define Resolurtion   0.5
#elif ((Measure_Mode==CONTINUE_H_MODE)|(Measure_Mode==ONE_TIME_H_MODE))#define Resolurtion   1
#elif ((Measure_Mode==CONTINUE_L_MODE)|(Measure_Mode==ONE_TIME_L_MODE))#define Resolurtion   4
#endif#define BH1750_I2C_WR 0   /* 写控制bit */
#define BH1750_I2C_RD 1   /* 读控制bit *//* 定义I2C总线连接的GPIO端口, 只需要修改下面4行代码即可任意改变SCL和SDA的引脚 */
#define BH1750_GPIO_PORT_I2C  GPIOB     /* GPIO端口 */
#define BH1750_RCC_I2C_PORT   RCC_APB2Periph_GPIOB    /* GPIO端口时钟 */
#define BH1750_I2C_SCL_PIN    GPIO_Pin_14      /* 连接到SCL时钟线的GPIO */
#define BH1750_I2C_SDA_PIN    GPIO_Pin_15      /* 连接到SDA数据线的GPIO *//* 定义读写SCL和SDA的宏,已增加代码的可移植性和可阅读性 */#define BH1750_I2C_SCL_1()  GPIO_SetBits(BH1750_GPIO_PORT_I2C, BH1750_I2C_SCL_PIN)    /* SCL = 1 */#define BH1750_I2C_SCL_0()  GPIO_ResetBits(BH1750_GPIO_PORT_I2C, BH1750_I2C_SCL_PIN)    /* SCL = 0 */#define BH1750_I2C_SDA_1()  GPIO_SetBits(BH1750_GPIO_PORT_I2C, BH1750_I2C_SDA_PIN)    /* SDA = 1 */#define BH1750_I2C_SDA_0()  GPIO_ResetBits(BH1750_GPIO_PORT_I2C, BH1750_I2C_SDA_PIN)    /* SDA = 0 */#define BH1750_I2C_SDA_READ()  GPIO_ReadInputDataBit(BH1750_GPIO_PORT_I2C, BH1750_I2C_SDA_PIN)  /* 读SDA口线状态 */void i2c_Start(void);
void i2c_Stop(void);
void i2c_SendByte(uint8_t _ucByte);
uint8_t i2c_ReadByte(void);
uint8_t i2c_WaitAck(void);
void i2c_Ack(void);
void i2c_NAck(void);
uint8_t i2c_CheckDevice(uint8_t _Address);uint8_t BH1750_Init(void);      //未包含IIC初始化
int LIght_Intensity(void);  //读取光照强度的值
uint8_t BH1750_Byte_Write(uint8_t data);
uint16_t BH1750_Read_Measure(void);
void BH1750_Power_ON(void);
void BH1750_Power_OFF(void);
void BH1750_RESET(void);#endif

3. 参考文献

[1] 原创力文档:https://max.book118.com/html/2022/0404/5140311013004211.shtm

4. 总结

以上即是本次的内容。
1.代码中的"dht11.c"、“dht11.h”、“sys.h”、“bh1750.c”、"bh1750.h"可在我的博客中下载。
2. 部分资料来源于网络和开发手册,如有侵权请联系我删除

这篇关于温湿度传感器(DHT11)以及光照强度传感器(BH1750)的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908791

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念