databricks spark基本使用方法和讲解

2024-04-16 05:12

本文主要是介绍databricks spark基本使用方法和讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

databricks spark基本使用方法

文章目录

  • databricks spark基本使用方法
    • spark dataframe和pandas dataframe区别
      • 概念
      • 小例子:感受下语法差异!
    • 基本使用
      • 生成序列数据
      • 显示数据
      • 查看rdd的分区数和作用
      • 对列进行操作

spark dataframe和pandas dataframe区别

概念

Spark 的 DataFrame 和 pandas 的 DataFrame 在概念上相似,都是用来处理表格数据的,但它们在设计、实现和使用场景上有显著的差异:

Spark DataFrame
1.分布式计算
2.数据存储在集群的多个节点上
3.懒执行(lazy execution)(如调用 .show().collect() 时)才实际执行。

pandas DataFrame
1.单机内存中的数据处理
2.操作(如添加列、过滤等)会立即在 DataFrame 上执行并返回结果。

小例子:感受下语法差异!

为了展现差异,下面同样的意思,让两者分别code,感受下语法的差异

spark dataframe
(一般在databricks上面不用建立session,环境已经帮你配置好了)

from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("Example").getOrCreate()
df = spark.read.csv("data.csv")
df.na.fill(value=0)  # 填充数字型缺失值为0
df.na.drop()         # 删除任何包含缺失值的行from pyspark.sql.functions import to_date
df.withColumn('new_date', to_date(df['date'], 'yyyy-MM-dd'))from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType
def square(x):return x * x
square_udf = udf(square, IntegerType())
df.withColumn('squared', square_udf(df['number']))

pandas dataframe

import pandas as pd
df = pd.read_csv("data.csv")
df.fillna(value=0)   # 填充数字型缺失值为0
df.dropna()          # 删除任何包含缺失值的行
df['new_date'] = pd.to_datetime(df['date'], format='%Y-%m-%d')
df['squared'] = df['number'].apply(lambda x: x * x)

基本使用

生成序列数据

df1 = spark.range(2, 10, 2)
df2 = spark.range(2, 10, 4)

生成的数据的index名字叫做“id",这里的df1为
2,4,6,8
df2的数据为
2,6
因此将两者join的话

df3 = df1.join(df2, ["id"])

df3的结果为2,6

显示数据

df1.show(10)

不指定的话,默认会展示20条数据

查看rdd的分区数和作用

df3.rdd.getNumPartitions()

作用:

  1. 并行度评估:RDD的分区数决定了Spark作业的并行度。每个分区通常由一个核心(core)处理,如果分区数太少,可能无法充分利用集群的所有资源;如果分区数过多,则可能因为调度和管理开销而降低性能。

  2. 性能优化:了解当前的分区数可以帮助你决定是否需要重新分区。通过调整分区数(使用repartition()coalesce()方法),来优化作业的性能

对列进行操作

from pyspark.sql.functions import spark_partition_id
df3.withColumn("partition_id", spark_partition_id()).show()

使用spark_partition_id函数可以帮助获得数据所在的分区的id。这里用withColumn之后返回了一个新的对象(rdd不可变,因此每次的操作实际上都会生成新的对象),并且调用show(),把这个对象使用掉了。如果希望是把分区id加上并且存下来,需要写:

from pyspark.sql.functions import spark_partition_id
df3 = df3.withColumn("partition_id", spark_partition_id())

这里,withColumn实际上是DataFrame API的一部分,而不是直接操作RDD。当在DataFrame上使用withColumn方法时,是在定义一个转换操作,这个操作会在DataFrame的执行计划中被添加。虽然DataFrame是建立在RDD之上的,所有DataFrame的操作最终都会转换成对RDD的操作,但从用户的角度看,withColumn是一个更高级别的抽象,专门用于结构化数据的操作。使用DataFrame API可以使代码更易于理解和维护,并且可以利用Spark的优化引擎(如Catalyst优化器和Tungsten执行引擎)来提高性能。

对列的数据进行统计

df2.withColumn("partition_id", spark_partition_id()              ).groupBy("partition_id").count().show()

这篇关于databricks spark基本使用方法和讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907862

相关文章

Linux使用cut进行文本提取的操作方法

《Linux使用cut进行文本提取的操作方法》Linux中的cut命令是一个命令行实用程序,用于从文件或标准输入中提取文本行的部分,本文给大家介绍了Linux使用cut进行文本提取的操作方法,文中有详... 目录简介基础语法常用选项范围选择示例用法-f:字段选择-d:分隔符-c:字符选择-b:字节选择--c

使用Go语言开发一个命令行文件管理工具

《使用Go语言开发一个命令行文件管理工具》这篇文章主要为大家详细介绍了如何使用Go语言开发一款命令行文件管理工具,支持批量重命名,删除,创建,移动文件,需要的小伙伴可以了解下... 目录一、工具功能一览二、核心代码解析1. 主程序结构2. 批量重命名3. 批量删除4. 创建文件/目录5. 批量移动三、如何安

springboot的调度服务与异步服务使用详解

《springboot的调度服务与异步服务使用详解》本文主要介绍了Java的ScheduledExecutorService接口和SpringBoot中如何使用调度线程池,包括核心参数、创建方式、自定... 目录1.调度服务1.1.JDK之ScheduledExecutorService1.2.spring

Java使用Tesseract-OCR实战教程

《Java使用Tesseract-OCR实战教程》本文介绍了如何在Java中使用Tesseract-OCR进行文本提取,包括Tesseract-OCR的安装、中文训练库的配置、依赖库的引入以及具体的代... 目录Java使用Tesseract-OCRTesseract-OCR安装配置中文训练库引入依赖代码实

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Qt 中集成mqtt协议的使用方法

《Qt中集成mqtt协议的使用方法》文章介绍了如何在工程中引入qmqtt库,并通过声明一个单例类来暴露订阅到的主题数据,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一,引入qmqtt 库二,使用一,引入qmqtt 库我是将整个头文件/源文件都添加到了工程中进行编译,这样 跨平台

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D