吴恩达机器学习笔记:第 7 周-12支持向量机(Support Vector Machines)12.4-12.6

本文主要是介绍吴恩达机器学习笔记:第 7 周-12支持向量机(Support Vector Machines)12.4-12.6,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 第 7 周 12、 支持向量机(Support Vector Machines)
    • 12.4 核函数 1

第 7 周 12、 支持向量机(Support Vector Machines)

12.4 核函数 1

回顾我们之前讨论过可以使用高级数的多项式模型来解决无法用直线进行分隔的分类
问题:
在这里插入图片描述
为了获得上图所示的判定边界,我们的模型可能是 θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x 1 x 2 + θ 4 x 1 2 + θ 5 x 2 2 + ⋯ θ_0 + θ_1x_1 + θ_2x_2 + θ_3x_1x_2 + θ_4x_1^2 +θ_5x_2^2 + ⋯ θ0+θ1x1+θ2x2+θ3x1x2+θ4x12+θ5x22+的形式。

我们可以用一系列的新的特征 f 来替换模型中的每一项。例如令: f 1 = x 1 , f 2 = x 2 , f 3 = x 1 x 2 , f 4 = x 1 2 , f 5 = x 2 2 . . . f_1 = x_1, f_2 = x_2, f_3 =x_1x_2, f_4 = x_1^2, f_5 = x_2^2... f1=x1,f2=x2,f3=x1x2,f4=x12,f5=x22...得到ℎ𝜃(𝑥) = θ 1 f 1 + θ 2 f 2 + . . . + θ n f n θ_1f_1 + θ_2f_2+. . . +θ_nf_n θ1f1+θ2f2+...+θnfn。然而,除了对原有的特征进行组合以外,有没有更好的方法来构造𝑓1, 𝑓2, 𝑓3?我们可以利用核函数来计算出新的特征。

给定一个训练实例 𝑥 ,我们利用 𝑥 的各个特征与我们预先选定的地标(landmarks) l ( 1 ) , l ( 2 ) , l ( 3 ) l^{(1)}, l^{(2)}, l^{(3)} l(1),l(2),l(3)的近似程度来选取新的特征 f 1 , f 2 , f 3 f_1, f_2, f_3 f1,f2,f3

在这里插入图片描述
上例中的𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦( x , l ( 1 ) x, l^{(1)} x,l(1))就是核函数,具体而言,这里是一个高斯核函数(Gaussian Kernel)。注:这个函数与正态分布没什么实际上的关系,只是看上去像而已。

这些地标的作用是什么?如果一个训练实例𝑥与地标𝐿之间的距离近似于 0,则新特征 f 近似于 e − 0 = 1 e^{−0}= 1 e0=1,如果训练实例𝑥与地标𝐿之间距离较远,则𝑓近似于 e − ( 一个较大的数 ) e^{−(一个较大的数) } e(一个较大的数)= 0。
假设我们的训练实例含有两个特征[ x 1 x 2 x_1 x_2 x1x2],给定地标 l ( 1 ) l^{(1)} l(1)与不同的𝜎值,见下图:

在这里插入图片描述
图中水平面的坐标为 x 1 , x 2 x_1,x_2 x1x2而垂直坐标轴代表𝑓。可以看出,只有当𝑥与 l ( 1 ) l^{(1)} l(1)重合时f才具有最大值。随着𝑥的改变𝑓值改变的速率受到 σ 2 σ^2 σ2的控制。

在下图中,当实例处于洋红色的点位置处,因为其离 l ( 1 ) l^{(1)} l(1)更近,但是离 l ( 2 ) l^{(2)} l(2) l ( 3 ) l^{(3)} l(3)较远,因此 f 1 f_1 f1接近 1,而 f 2 , f 3 f_2,f_3 f2,f3接近 0。因此ℎ𝜃(𝑥) = θ_0 + θ_1f_1 + θ_2f_2 +θ_3f_3 > 0,因此预测𝑦 = 1。同理可以求出,对于离l^{(2)}$较近的绿色点,也预测𝑦 = 1,但是对于蓝绿色的点,因为其离三个地标都较远,预测𝑦 = 0。
在这里插入图片描述

这样,图中红色的封闭曲线所表示的范围,便是我们依据一个单一的训练实例和我们选取的地标所得出的判定边界,在预测时,我们采用的特征不是训练实例本身的特征,而是通过核函数计算出的新特征 f 1 , f 2 , f 3 f_1, f_2, f_3 f1,f2,f3

这篇关于吴恩达机器学习笔记:第 7 周-12支持向量机(Support Vector Machines)12.4-12.6的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907861

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个