Java锁是如何保证数据可见性的 (本文未经过技术多方验证,仅供留存)

2024-04-16 03:48

本文主要是介绍Java锁是如何保证数据可见性的 (本文未经过技术多方验证,仅供留存),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在 java.util.concurrent.locks.Lock 接口的Javadoc中有这样一段话:

All Lock implementations must enforce the same memory synchronization semantics as provided by the built-in monitor lock :

  • A successful lock operation acts like a successful monitorEnter action
  • A successful unlock operation acts like a successful monitorExit action

Unsuccessful locking and unlocking operations, and reentrant locking/unlocking operations, do not require any memory synchronization effects.

这段话的核心是j.u.c.locks.Lock接口的实现类具有和synchronized内置锁一样的内存同步语义。

不同于由JVM底层实现的内置锁,Lock接口的实现类是直接用Java代码实现的。如何保证了内存中数据的可见性?下面进行一下分析。

可见性

什么是可见性?如果一个线程对于另外一个线程是可见的,那么这个线程的修改就能够被另一个线程立即感知到。用一个简单的例子来说明:

boolean ok = false;
int a = 0;// Thread a
a = 1
ok = true// Thread b
// 可能一直循环下去
while (ok) {// 输出的number的值不一定是1System.out.println(a)
}

Thread b中的循环可能会一直持续下去,因为Thread a设置的ok的值并不一定立即被Thread b感知到,并且输出的a的值也不一定是1。

在多线程程序中,没有做正确的同步是无法保证内存中数据的可见性的。

用锁来保证可见性

我们可以利用Java锁来保证多线程程序中数据的可见性,来看下面这个例子:

public class Counter {private static int counter = 0;// 第一种方式:没有做同步操作public static int incrCounter1() {return counter++;}// 第二种方式:使用synchronized同步public synchronized static int incrCounter2() {return counter++;}// 第三种方式:使用ReentrantLock同步private static ReentrantLock lock = new ReentrantLock();public static int incrCounter3() {try {lock.lock();return counter++;} finally {lock.unlock();}}
}

显然,incrCounter1不是线程安全的,在一个线程写入一个最新的值后,无法保证另外一个线程能立即读到最新写入的值,incrCounter2和incrCounter3分别利用内置锁synchronized和ReentrantLock来保证了其它线程能看到最新的counter的值,达到我们想要的效果。

Java锁保证可见性的具体实现

Happens-before规则

从JDK 5开始,JSR-133定义了新的内存模型,内存模型描述了多线程代码中的哪些行为是合法的,以及线程间如何通过内存进行交互。

新的内存模型语义在内存操作(读取字段,写入字段,加锁,解锁)和其他线程操作上创建了一些偏序规则,这些规则又叫作Happens-before规则。它的含义是当一个动作happens before另一个动作,这意味着第一个动作被保证在第二个动作之前被执行并且结果对其可见。我们利用Happens-before规则来解释Java锁到底如何保证了可见性。

Java内存模型一共定义了八条Happens-before规则,和Java锁相关的有以下两条:

  1. 内置锁的释放锁操作发生在该锁随后的加锁操作之前
  2. 一个volatile变量的写操作发生在这个volatile变量随后的读操作之前

synchronized提供的可见性

synchronized有两种用法,一种可以用来修饰方法,另外一种可以用来修饰代码块。我们以synchronized代码块为例:

synchronized(SomeObject) {// code
}

因为synchronized代码块是互斥访问的,只有一个线程释放了锁,另一个线程才能进入代码块中执行。

由上述Happens-before规则第一条:

内置锁的释放锁操作发生在该锁随后的加锁操作之前

假设当线程a释放锁后,线程b拿到了锁并且开始执行代码块中的代码时,线程b必然能够看到线程a看到的所有结果,所以synchronized能够保证线程间数据的可见性。

j.u.c.locks.Lock提供的可见性

volatile关键字的可见性

对第一个代码样例做一下改造,用volatile关键字来修饰ok,其余不变:

volatile boolean ok = false
int a = 0// Thread a
a = 1
ok = true// Thread b
if (ok) {// 确保a的值为1 System.out.println(a)
}

根据上述Happens-before规则第二条:

一个volatile变量的写操作发生在这个volatile变量随后的读操作之前

假设线程a将ok的值设置为true,那么如果线程b看到ok的值为true,一定可以保证输出的a的值是1。

ReentrantLock可见性保证的具体实现

j.u.c.locks.Lock接口定义了六个方法:

public interface Lock {void lock();void lockInterruptibly() throws InterruptedException;boolean tryLock();boolean tryLock(long time, TimeUnit unit) throws InterruptedException;void unlock();Condition newCondition();
}

在j.u.c包中实现Lock接口的类主要有ReentrantLock和ReentrantReadWriteLock,下面以ReentrantLock为例来说明(ReentrantReadWriteLock原理相同)。

先来看ReentrantLock类的lock方法和unlock方法的实现:

public void lock() {sync.lock();
}// sync.lock()实现
final void lock() {acquire(1);
}public void unlock() {sync.release(1);
}

lock方法和unlock方法的具体实现都代理给了sync对象,来看一下sync对象的定义:

abstract static class Sync extends AbstractQueuedSynchronizerstatic final class FairSync extends Syncpublic ReentrantLock(boolean fair) {sync = fair ? new FairSync() : new NonfairSync();
}

根据ReentrantLock的构造参数,sync对象可以是FairSync(公平锁)或者是NonfairSync(非公平锁),我们以FairSync为例(NonfairSync原理类似)来说明。

从上面代码中可以看出,lock方法和unlock方法的具体实现都是由acquire和release方法完成的,而FairSync类中并没有定义acquire方法和release方法,这两个方法都是在Sync的父类AbstractQueuedSynchronizer类中实现的。

public final void acquire(int arg) {// 只关注tryAcquire即可if (!tryAcquire(arg) &&acquireQueued(addWaiter(Node.EXCLUSIVE), arg))selfInterrupt();
}public final boolean release(int arg) {// 只关注tryRelease即可if (tryRelease(arg)) {Node h = head;if (h != null && h.waitStatus != 0)unparkSuccessor(h);return true;}return false;
}

acquire方法的大致步骤:tryAcquire会尝试获取锁,如果获取失败会将当前线程加入等待队列,并挂起当前线程。当前线程会等待被唤醒,被唤醒后再次尝试获取锁。

release方法的大致步骤:tryRelease会尝试释放锁,如果释放成功可能会唤醒其它线程,释放失败会抛出异常。

我们可以看出,获取锁和释放锁的具体操作是在tryAcquire和tryRelease中实现的,而tryAcquire和tryRelease在父类AbstractQueuedSynchronizer中没有定义,留给子类FairSync去实现。

我们来看一下FairSync类的tryAcquire和tryRelease的具体实现:

// state变量定义在AbstractQueuedSynchronizer中,表示同步状态。
private volatile int state;protected final boolean tryAcquire(int acquires) {final Thread current = Thread.currentThread();// 读Stateint c = getState();if (c == 0) {// 获取到锁会写stateif (!hasQueuedPredecessors() &&compareAndSetState(0, acquires)) {setExclusiveOwnerThread(current);return true;}}else if (current == getExclusiveOwnerThread()) {int nextc = c + acquires;if (nextc < 0)throw new Error("Maximum lock count exceeded");// 写statesetState(nextc);return true;}return false;
}protected final boolean tryRelease(int releases) {// 读stateint c = getState() - releases;if (Thread.currentThread() != getExclusiveOwnerThread())throw new IllegalMonitorStateException();boolean free = false;if (c == 0) {free = true;setExclusiveOwnerThread(null);}// 写statesetState(c);return free;
}

从上面的代码中可以看到有一个volatile state变量,这个变量用来表示同步状态,获取锁时会先读取state的值,获取成功后会把值从0修改为1。当释放锁时,也会先读取state的值然后进行修改。也就是说,无论是成功获取到锁还是成功释放掉锁,都会先读取state变量的值,再进行修改。

我们将上面的代码做个简化,只留下关键步骤:

private volatile int state;void lock() {read stateif (can get lock)write state
}void unlock() {write state
}

假设线程a通过调用lock方法获取到锁,此时线程b也调用了lock方法,因为a尚未释放锁,b只能等待。a在获取锁的过程中会先读state,再写state。当a释放掉锁并唤醒b,b会尝试获取锁,也会先读state,再写state。

我们注意到上述提到的Happens-before规则的第二条:

一个volatile变量的写操作发生在这个volatile变量随后的读操作之前

可以推测出,当线程b执行获取锁操作,读取了state变量的值后,线程a在写入state变量之前的任何操作结果对线程b都是可见的。

由此,我们可以得出结论Lock接口的实现类能实现和synchronized内置锁一样的内存数据可见性。

结束语

ReentrantLock及其它Lock接口实现类实现内存数据可见性的方式相对比较隐秘,借助了volatile关键字间接地实现了可见性。其实不光是Lock接口实现类,因为j.u.c包中大部分同步器的实现都是基于AbstractQueuedSynchronizer类来实现的,因此这些同步器也能够提供一定的可见性,有兴趣的同学可以尝试用类似的思路去分析。

这篇关于Java锁是如何保证数据可见性的 (本文未经过技术多方验证,仅供留存)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907720

相关文章

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

Java中的密码加密方式

《Java中的密码加密方式》文章介绍了Java中使用MD5算法对密码进行加密的方法,以及如何通过加盐和多重加密来提高密码的安全性,MD5是一种不可逆的哈希算法,适合用于存储密码,因为其输出的摘要长度固... 目录Java的密码加密方式密码加密一般的应用方式是总结Java的密码加密方式密码加密【这里采用的

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题

《解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题》本文主要讲述了在使用MyBatis和MyBatis-Plus时遇到的绑定异常... 目录myBATis-plus-boot-starpythonter与mybatis-spring-b