剑指offer之牛客与力扣——前者分类题单中的题目在后者的链接

2024-04-15 21:44

本文主要是介绍剑指offer之牛客与力扣——前者分类题单中的题目在后者的链接,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

搜索

[4.12完成]
在这里插入图片描述
JZ1 LCR 172. 统计目标成绩的出现次数
JZ3 153. 寻找旋转排序数组中的最小值
JZ4 LCR 014. 字符串的排列
JZ5 LCR 163. 找到第 k 位数字 = 400

动态规划

[4.15完成]
在这里插入图片描述
JZ2 LCR 161. 连续天数的最高销售额 =53
JZ3 LCR 127. 跳跃训练 = 70
JZ4 LCR 126. 斐波那契数
JZ6 ——?
JZ7——?
JZ9 LCR 166. 珠宝的最高价值
JZ10 ——?
JZ11 LCR 165. 解密数字

这篇关于剑指offer之牛客与力扣——前者分类题单中的题目在后者的链接的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907010

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

安卓链接正常显示,ios#符被转义%23导致链接访问404

原因分析: url中含有特殊字符 中文未编码 都有可能导致URL转换失败,所以需要对url编码处理  如下: guard let allowUrl = webUrl.addingPercentEncoding(withAllowedCharacters: .urlQueryAllowed) else {return} 后面发现当url中有#号时,会被误伤转义为%23,导致链接无法访问

题目1254:N皇后问题

题目1254:N皇后问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 题目描述: N皇后问题,即在N*N的方格棋盘内放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在同一斜线上。因为皇后可以直走,横走和斜走如下图)。 你的任务是,对于给定的N,求出有多少种合法的放置方法。输出N皇后问题所有不同的摆放情况个数。 输入

题目1380:lucky number

题目1380:lucky number 时间限制:3 秒 内存限制:3 兆 特殊判题:否 提交:2839 解决:300 题目描述: 每个人有自己的lucky number,小A也一样。不过他的lucky number定义不一样。他认为一个序列中某些数出现的次数为n的话,都是他的lucky number。但是,现在这个序列很大,他无法快速找到所有lucky number。既然

每日一练7:简写单词(含链接)

1.链接 简写单词_牛客题霸_牛客网 2.题目 3.代码1(错误经验) #include <iostream>#include <string>using namespace std;int main() {string s;string ret;int count = 0;while(cin >> s)for(auto a : s){if(count == 0){if( a <=

两数之和--力扣1

两数之和 题目思路C++代码 题目 思路 根据题目要求,元素不能重复且不需要排序,我们这里使用哈希表unordered_map。注意题目说了只对应一种答案。 所以我们在循环中,使用目标值减去当前循环的nums[i],得到差值,如果我们在map中能够找到这个差值,就说明存在两个整数的和为目标值。 如果没有找到,就将当前循环的nums[i]以及下标i放入map中,以便后续查

【408数据结构】散列 (哈希)知识点集合复习考点题目

苏泽  “弃工从研”的路上很孤独,于是我记下了些许笔记相伴,希望能够帮助到大家    知识点 1. 散列查找 散列查找是一种高效的查找方法,它通过散列函数将关键字映射到数组的一个位置,从而实现快速查找。这种方法的时间复杂度平均为(

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密

短链接算法原理

平时我们在上网的时候,印象最深刻的有一次是短链接的服务。例如:平时在微信上看一个网页的时候,如果我们选择在浏览器打开的时候,会看到很长的URL,我们分享的时候,会看到一个很短URL,这就是本次所说的短链接的应用之一。 长链接示例:https://mp.weixin.qq.com/s?__biz=MzAxNzMwOTQ0NA==&mid=2653355437&idx=1&sn=5901826ea63