基于LangChain,使用自有知识库创建GPT智能体

2024-04-15 02:28

本文主要是介绍基于LangChain,使用自有知识库创建GPT智能体,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,Langchain智能体在定制对话界面方面具有实际应用潜力,能够灵活适应并满足用户的多样化需求。借助Langchain,开发者可以整合多种格式数据,如URL链接或PDF文件,来构建一个专属知识库。这个知识库不仅能够为智能体提供丰富的信息资源以回答问题,还能结合搜索引擎或Zapier等工具,实现更多自动化功能。

本文详细介绍如何搭建Langchain智能体,使其能够依据PDF文档内容提供答案,并通过Zapier平台自动化发送邮件。通过这些流程,大家能够深入了解并实践Langchain智能体的强大功能。

1.环境搭建

首先,需要安装Langchain和其他依赖项:

!pip install langchain
!pip install pypdf
!pip install pinecone-client
!pip install openai
!pip install tiktoken

还需要为OpenAI和Pinecone设置API密钥:

import os
import pineconeos.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"# 初始化Pinecone
pinecone.init(api_key="YOUR_PINECONE_API_KEY",  # 在app.pinecone.io查找environment="YOUR_ENVIRONMENT_NAME"  # 控制台中API密钥旁边
)

2.创建索引

Langchain智能体能够利用定制化的知识库来检索和获取信息。为了让大型语言模型能够有效地理解并处理这些信息,需要确保其能够掌握相关的上下文。通常,可以通过将完整的上下文信息连同用户的查询一起输入模型来实现。然而,当处理大量数据时,这种方法就会变得不切实际。

为了解决这个问题,采用索引技术来优化知识库的存储和检索。通过索引,数据被划分为多个小片段,每个片段都通过向量形式编码了其语义信息。当用户发起查询,系统将根据查询内容搜索对应的向量,快速定位到包含所需信息的数据片段。这样,系统仅向语言模型提供与用户查询直接相关的数据片段,而不是将全部数据集一次性输入,从而大幅提高了检索效率,并确保结果的精确性。

2.1 从PDF加载数据

现在,为定制化知识库加载文档。使用PDF文件作为示例,但Langchain也支持其他格式。

from langchain.document_loaders import PyPDFLoaderloader = PyPDFLoader("PATH_TO_YOUR_FILE")
pages = loader.load_and_split()

2.2 将PDF文本分割成小块

分割文本的方法有很多。这里使用的是适用于各类文本的分割器。

from langchain.text_splitter import RecursiveCharacterTextSplittertext_splitter = RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=200,length_function=len,
)docs = text_splitter.split_documents(pages)

创建嵌入:

from langchain.embeddings.openai import OpenAIEmbeddingsembeddings = OpenAIEmbeddings()

2.3 创建向量存储

向量存储技术主要用于存储文档及其对应的嵌入向量,以便能够通过这些嵌入向量快速定位和检索到相关文档。

创建向量存储的方法有很多,本文使用Pinecone。要开始使用Pinecone,需要先在其平台上创建索引。然后在“index_name”中输入索引名称。

from langchain.vectorstores import Pineconeindex_name = "index_name"# 创建新索引
docsearch = Pinecone.from_documents(docs, embeddings, index_name=index_name)# 如果您已经有了索引,可以像这样进行加载
# docsearch = Pinecone.from_existing_index(index_name, embeddings)

如果无法创建Pinecone账户,可以尝试使用CromaDB。以下代码使用Chroma创建了一个临时的内存向量存储,如果无法访问Pinecone,请使用它作为替代。

from langchain.vectorstores import Chroma
docsearch = Chroma.from_documents(docs, embeddings)

3.问题回答链

问题回答链能够确保系统根据上下文提供恰当的答案。

from langchain.chains import RetrievalQA
from langchain import OpenAI# 定义LLM
llm = OpenAI(temperature=0.2)qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=docsearch.as_retriever(search_kwargs={"k": 2}))

可以通过传递一个问题来测试QA链:

query = "What is DesignOps support model?"
qa.run(query)

这段代码的输出会基于PDF文件中相关上下文块的问题答案。

4.Zapier集成

可以使用Langchain Zapier工具包将智能体与Zapier集成。首先,需要在https://nla.zapier.com/获取Zapier API密钥,并在Zapier中添加将要使用的操作。

os.environ["ZAPIER_NLA_API_KEY"] = os.environ.get("ZAPIER_NLA_API_KEY", "YOUR_ZAPIER_API_KEY")接下来,初始化Zapier工具包from langchain.agents.agent_toolkits import ZapierToolkit
from langchain.utilities.zapier import ZapierNLAWrapperzapier = ZapierNLAWrapper()
toolkit = ZapierToolkit.from_zapier_nla_wrapper(zapier)

5.构建Langchain智能体

from langchain.agents import AgentType
from langchain.agents import initialize_agent, Tool
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI# 为智能体定义工具
tools = [Tool(name="Demo",func=qa.run,description="use this as the primary source of context information when you are asked the question. Always search for the answers using this tool first, don't make up answers yourself"),
] + toolkit.get_tools()# 设置对话记忆
memory = ConversationBufferMemory(memory_key="chat_history")# 设置智能体
agent_chain = initialize_agent(tools, llm, agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, memory=memory)

现在已经设置好了智能体,可以通过提问进行测试。智能体将使用问题回答链来找到相关上下文并生成答案,执行用户请求中指定的其他任务。

agent_chain.run(input="What Adrienne Allnutt have said about DesignOps?")
agent_chain.run(input="Email the answer to email@gmail.com and mention that this email was sent by AI")

为了让智能体正确执行用户的指令,构建准确的提示十分重要。在开发面向用户的应用时,我们应该深入研究如何设计有效的提示模板,以简化用户与智能体的交互过程。同时,还需要考虑聊天界面是否是最合适的交互方式,或是否有其他界面设计能提供更优的用户体验。

这篇关于基于LangChain,使用自有知识库创建GPT智能体的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904666

相关文章

springboot security使用jwt认证方式

《springbootsecurity使用jwt认证方式》:本文主要介绍springbootsecurity使用jwt认证方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录前言代码示例依赖定义mapper定义用户信息的实体beansecurity相关的类提供登录接口测试提供一

go中空接口的具体使用

《go中空接口的具体使用》空接口是一种特殊的接口类型,它不包含任何方法,本文主要介绍了go中空接口的具体使用,具有一定的参考价值,感兴趣的可以了解一下... 目录接口-空接口1. 什么是空接口?2. 如何使用空接口?第一,第二,第三,3. 空接口几个要注意的坑坑1:坑2:坑3:接口-空接口1. 什么是空接

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

GORM中Model和Table的区别及使用

《GORM中Model和Table的区别及使用》Model和Table是两种与数据库表交互的核心方法,但它们的用途和行为存在著差异,本文主要介绍了GORM中Model和Table的区别及使用,具有一... 目录1. Model 的作用与特点1.1 核心用途1.2 行为特点1.3 示例China编程代码2. Tab

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp