浅述python中NumPy包

2024-04-14 12:52
文章标签 python numpy 浅述

本文主要是介绍浅述python中NumPy包,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NumPy(Numerical Python)是Python的一种开源的数值计算扩展,提供了多维数组对象ndarray,是一个快速、灵活的大数据容器,可以用来存储和处理大型矩阵,支持大量的维度数组与矩阵运算,并针对数组运算提供大量的数学函数库。这些函数可以直接在数组和矩阵上操作,大大简化了数据处理和分析的复杂度。

NumPy数组的元素类型必须相同,具有同质性,以提高元素查找效率。同时,NumPy数组的元素可以通过基于0的下标单独访问。NumPy数组还通过dtype和shape属性表示元素的类型和维度,其中维度的类型是元组,按照从高到低的顺序来排列每一维的大小。

NumPy的优点在于其提供了大量数值计算的函数,能够进行线性代数的相关操作,并且由于其底层用C编写,因此执行效率非常高。这使得NumPy在科学计算、数据分析、机器学习、深度学习以及人工智能等领域有着广泛的应用。

安装NumPy的方法有多种,包括使用pip、conda或者从源码进行安装。在命令行中输入pip install numpy即可从Python官方的包索引中下载和安装最新版的NumPy。如果需要安装特定版本的NumPy,可以在命令中指定版本号,例如pip install numpy==1.19.3将安装NumPy的1.19.3版本。

简单举例:

以下是一些NumPy的简单使用例子:

  1. 创建数组

使用np.array()函数可以直接创建一个NumPy数组。

import numpy as np
# 创建一个一维数组
arr1 = np.array([1, 2, 3, 4, 5])
print(arr1) # 输出: [1 2 3 4 5]
# 创建一个二维数组
arr2 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(arr2)
# 输出:
# [[1 2 3]
# [4 5 6]
# [7 8 9]]

2.基本数学运算

NumPy支持对数组进行基本的数学运算,如加法、减法、乘法、除法等。

# 创建两个数组
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
# 数组加法
c = a + b
print(c) # 输出: [5 7 9]
# 数组乘法
d = a * b
print(d) # 输出: [ 4 10 18]

3.索引和切片

可以使用索引和切片来访问和修改数组中的元素。

# 使用索引访问数组元素
element = arr2[0, 1] # 访问第一行第二列的元素
print(element) # 输出: 2
# 使用切片访问数组的子集
subset = arr2[:2, 1:] # 访问前两行,从第二列开始到最后的所有列
print(subset)
# 输出:
# [[2 3]
# [5 6]]

4.创建特殊数组

NumPy提供了创建特殊类型数组的函数,如零数组、一数组、等差数组等。

# 创建零数组
zeros_arr = np.zeros((3, 3))
print(zeros_arr)
# 输出:
# [[0. 0. 0.]
# [0. 0. 0.]
# [0. 0. 0.]]
# 创建一数组
ones_arr = np.ones((2, 2), dtype=np.int)
print(ones_arr)
# 输出:
# [[1 1]
# [1 1]]
# 创建等差数组
linspace_arr = np.linspace(0, 10, 5) # 从0到10,生成5个数
print(linspace_arr) # 输出: [ 0. 2.5 5. 7.5 10. ]

NumPy作为Python中科学计算的基础包,功能丰富且强大,除了上述的基本功能外,还有许多其他高级功能。以下是一些NumPy的高级功能示例:

1.数组重塑
NumPy提供了reshape方法,允许用户改变数组的形状而不改变其数据。例如,你可以将一个一维数组重塑为二维数组,或者将一个二维数组重塑为三维数组等。

import numpy as np
a = np.array([1, 2, 3, 4, 5, 6])
b = a.reshape(2, 3)
print(b)
# 输出:
# [[1 2 3]
# [4 5 6]]

2.数组合并
使用np.concatenate函数,你可以沿着指定的轴将多个数组合并成一个数组。

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
c = np.concatenate((a, b))
print(c)
# 输出: [1 2 3 4 5 6]

3.布尔索引
通过布尔索引,你可以基于条件选择数组中的元素

arr = np.array([1, 2, 3, 4, 5])
filtered_arr = arr[arr > 3]
print(filtered_arr)
# 输出: [4 5]

4.花式索引
花式索引允许你使用整数数组来索引数组中的元素。这可以用于选择非连续的元素或进行复杂的切片操作。

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
selected_elements = arr[[0, 1, 2], [0, 1, 2]]#在NumPy中,使用两个整数数组进行索引时,第一个数组指定了行索引,第二个数组指定了列索引。这种方式被称为“花式索引”或“高级索引”。
print(selected_elements)
# 输出: [1 5 9] 这里的 arr[[0, 1, 2], [0, 1, 2]] 实际上选择的是 (0, 0)(1, 1), 和 (2, 2) 这三个位置的元素,即对角线元素。

5.线性代数运算
NumPy提供了许多线性代数函数,如矩阵乘法、矩阵转置、求解线性方程组、计算特征值和特征向量等。

A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
C = np.dot(A, B) # 矩阵乘法
print(C)
# 输出:
# [[19 22]
# [43 50]]

6.随机数生成
NumPy提供了多种随机数生成函数,可以用于生成均匀分布、正态分布等不同分布的随机数。

# 生成0到1之间的随机浮点数
random_float = np.random.rand()
print(random_float)
# 生成形状为(3, 3)的随机数矩阵 也是01之间的数
random_matrix = np.random.rand(3, 3)
print(random_matrix)

如果随机数矩阵不在0到1之间,而是具有其他范围或分布,NumPy提供了多种函数来满足这些需求。以下是一些常用的方法:

  1. 指定范围:使用np.random.uniform函数可以指定随机数的下限和上限。
import numpy as np
# 生成形状为(3, 3)的随机数矩阵,元素范围在a和b之间
a, b = 5, 10 # 指定范围
random_matrix = np.random.uniform(a, b, size=(3, 3))
print("随机数矩阵:\n", random_matrix)

2.整数随机数:使用np.random.randint函数可以生成指定范围内的整数随机数。

import numpy as np
# 生成形状为(3, 3)的整数随机矩阵,元素范围在low和high之间(包括low,不包括high)
low, high = 5, 10 # 指定范围
random_matrix = np.random.randint(low, high, size=(3, 3))
print("整数随机数矩阵:\n", random_matrix)

3.正态分布:使用np.random.randnnp.random.normal函数可以生成符合正态分布的随机数。

import numpy as np
# 生成形状为(3, 3)的正态分布随机数矩阵,均值为mu,标准差为sigma
mu, sigma = 0, 1 # 均值和标准差
random_matrix = np.random.normal(mu, sigma, size=(3, 3))
print("正态分布随机数矩阵:\n", random_matrix)

3.其他分布:NumPy还提供了其他分布,如指数分布(np.random.exponential)、泊松分布(np.random.poisson)等,您可以根据需要选择合适的函数。

请注意,上述函数中的size参数用于指定输出数组的形状。如果您想生成一个3x3的矩阵,就应该将size设置为(3, 3)。此外,还可以通过调整分布的参数(如均值、标准差、范围等)来控制随机数的特性。

这些只是NumPy功能的冰山一角。NumPy还提供了大量的数学函数、统计函数、线性代数函数等,可以方便地处理各种数值计算任务。无论是数据科学、机器学习还是科学计算,NumPy都是一个非常强大的工具。

总的来说,NumPy是一个强大且灵活的工具,对于需要进行数值计算和数据处理的任务来说,它是一个不可或缺的选择。

这篇关于浅述python中NumPy包的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/903043

相关文章

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主