操作系统(第四周 第二堂)

2024-04-14 04:36
文章标签 操作系统 第二 四周

本文主要是介绍操作系统(第四周 第二堂),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

回顾

进程运行

进程的创建

 进程的工作

举例

进程的删除

举例1(走到return 0结束)

举例2(利用exit(1)结束)

进程通信 

共享内存

生产者算法

消费者算法

消息传递 

定义

 算法实现

总结


回顾

上文的重点就两个内容:一、进程调度的理解;二、队列图以及调度程序

其中进程调度的理解有:一、进程本身角度调度理解;二、计算机整体角度理解进程管理和调度

队列图共有五个队列:I/O队列、中断队列、就绪队列、时间片过期队列、创建子进程队列

调度程序:长期调度程序、短期调度程序

进程运行

研究完进程调度,现在我们来研究进程的运行,研究进程运行前要先看进程是如何创建、删除的

一个进程的一生包括:创建、工作、被调度、删除

进程的创建

所有进程(除了Pid=0的初始进程)都是由父进程创建产生

定义:创建进程称为父进程,被创建进程称为子进程

每一个进程都采用进程标识符来唯一确定进程,子进程和父进程得pid不同

进程创建必备的两个指令:fork()、exec()

fork():

一、创建子进程,子进程和父进程完全相同(虚拟地址也相同,但是物理空间实际地址不同)。完全相同也意味着父进程fork后的程序计数器为fork函数结束位置,而子进程的程序计数器也为fork函数结束位置

二、在父进程中返回子进程的pid,在子进程中返回0

三、创建子进程也意味着要在内核中新建PCB(进程控制块)

exec():

一、以新程序来取代原进程的内存空间,包括程序、栈等进程所有的成分

二、exec后子进程就有了新的虚拟地址空间,可以认为“脱离”父进程的限制

三、exec后子进程的PID保持不变

 进程的工作

进程是并行工作的,即子进程被父进程创建后和父进程一起工作(父进程利用wait(NULL)除外,该方法让父进程在子进程结束后才工作)

举例

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>// 测试创建子进程函数 pid_t fork();
int main()
{pid_t pid = fork();if(-1 == pid){//创建子进程失败return -1;}if(0 == pid){//子进程printf("I am child, my fork:%d\n", pid);printf("I am child, my pid:%d, ppid:%d\n",getpid(),getppid());sleep(5);printf("I am child, I have finished\n");  }else{//父进程 printf("I am father, my fork:%d\n", pid);      printf("I am father, my pid:%d, ppid:%d\n",getpid(),getppid());sleep(5);printf("I am father, I have finished\n");   }return 0;
}

执行结果为:

程序运行的关键点: 

1、父进程先运行:由于子进程由fork函数创建,所以需要耗费一些时间。

2、父子进程并行运行:父进程利用sleep函数休息时,可以看到子进程也输出了其值,说明父子进程目前共同在运行

3、fork返回值:父进程的fork返回值为子进程的pid,子进程的fork返回值为0

4、pid是进程标识符:子进程和父进程的pid的值不同

进程的删除

进程的删除主要有两种:

1、进程走到return 0 自己结束 

2、进程调用exit(1)结束

举例1(走到return 0结束)

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>// 测试创建子进程函数 pid_t fork();
int main()
{pid_t pid = fork();if(-1 == pid){//创建子进程失败return -1;}if(0 == pid){//子进程printf("I am child, my fork:%d\n", pid);printf("I am child, my pid:%d, ppid:%d\n",getpid(),getppid());sleep(5);printf("I am child, I have finished\n");  }else{//父进程 wait(NULL) printf("I am father, my fork:%d\n", pid);      printf("I am father, my pid:%d, ppid:%d\n",getpid(),getppid());sleep(5);printf("I am father, I have finished\n");   }printf("%d 号进程已结束\n",pid);return 0;
}

 结果为:

关键点:在父进程中调用wait(NULL)函数让父进程在子进程结束后才开始运行 

举例2(利用exit(1)结束)

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>
#include <stdlib.h>// 测试创建子进程函数 pid_t fork();
int main()
{pid_t pid = fork();if(-1 == pid){//创建子进程失败return -1;}if(0 == pid){//子进程printf("I am child, my fork:%d\n", pid);printf("I am child, my pid:%d, ppid:%d\n",getpid(),getppid());sleep(5);printf("I am child, I have finished\n");exit(1);  }else{//父进程 wait(NULL) printf("I am father, my fork:%d\n", pid);      printf("I am father, my pid:%d, ppid:%d\n",getpid(),getppid());sleep(5);printf("I am father, I have finished\n");   }printf("%d 号进程已结束\n",pid);return 0;
}

执行结果为:

关键点:子进程运行到exit函数后就自己删除自己,父进程开始运行 

进程通信 

操作系统内并发执行的进程可以是独立的也可以是协作的,协作完成的进程就涉及到进程间通信

进程通信主要有两种方式:1、共享内存  2、消息传递

图中关键点: 

1、共享内存没有内核参与,消息传递需要内核参与

2、共享内存速度快于消息传递,但是共享内存要避免内存冲突。在多处理器系统上,共享内存有高速缓存一致性的问题

共享内存

共享内存实现通信一定要面临一种情况:其中一个进程是消息的发送者,另一个进程是消息的接收者。

这样我们必须要设计算法保证:消息接受者知道消息发送者何时发送

生产者算法
while(true){while(((in+1)%BUFFER_SIZE)==out); //共享内存满了,就不能生产等待消费者进程拿buffer[in]=next_produced;in=(in+1))%BUFFER_SIZE
}
消费者算法
item next_consumed;
while(true){while(in==out);//此时共享内存是空的,无法拿东西next_comsumed=buffer[out];out=(out+1)%BUFFER_SIZE;

算法关键点: 

1、缓冲区最大值为BUFFER_SIZE-1(人为设定)

2、in+1==out设定为满,in==out设定为空

3、如果想要缓冲区最大值为BUFFER_SIZE,需要另设一个标志数用来记录缓冲区是满的还是空的。否则满的和空的都是in==out成立则无法区分

4、本质就是双指针实现,如上图所示

消息传递 

定义

关键点:

1、消息传递对于分布式环境(硬件不同)的两个进程的通信特别有用

2、消息传递必须通过系统调用完成,所以必须陷入内核

3、消息传递一共有两种通信方式,第一种是直接通信方式,第二种是间接通信方式

首先要知道一个消息是由消息头和消息体组成的,消息头里包括:发送进程ID、接收进程ID、消息类型、消息长度等格式化的信息(计算机网络中发送的“报文”其实就是一种格式化的消息)。

直接通信方式,如下:

发送进程把它想要发送的消息,通过发送原语发送给接收进程,然后这些消息会被放到接收进程的消息队列里面,接着接收进程通过接收原语一个个读取消息队列中的消息,这样发送进程和接收进程就实现了线程通信。

间接通信方式,如下:

对于间接通信方式,进程1会先通过发送原语把消息放到一个信箱中,然后进程2会通过接收原语从信箱中读取这些消息。

 算法实现

总结

本文到这里就结束啦~~这堂课的内容较为杂乱、复杂,但是学一学拓展一下知识是非常好的呀~~
如果觉得对你有帮助,辛苦友友点个赞哦~

知识来源:操作系统概念(黑宝书)、山东大学高晓程老师PPT及课上讲解。不要私下外传

这篇关于操作系统(第四周 第二堂)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/902083

相关文章

【Linux进阶】UNIX体系结构分解——操作系统,内核,shell

1.什么是操作系统? 从严格意义上说,可将操作系统定义为一种软件,它控制计算机硬件资源,提供程序运行环境。我们通常将这种软件称为内核(kerel),因为它相对较小,而且位于环境的核心。  从广义上说,操作系统包括了内核和一些其他软件,这些软件使得计算机能够发挥作用,并使计算机具有自己的特生。这里所说的其他软件包括系统实用程序(system utility)、应用程序、shell以及公用函数库等

【操作系统】信号Signal超详解|捕捉函数

🔥博客主页: 我要成为C++领域大神🎥系列专栏:【C++核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞👍收藏⭐评论✍️ 本博客致力于知识分享,与更多的人进行学习交流 ​ 如何触发信号 信号是Linux下的经典技术,一般操作系统利用信号杀死违规进程,典型进程干预手段,信号除了杀死进程外也可以挂起进程 kill -l 查看系统支持的信号

操作系统实训复习笔记(1)

目录 Linux vi/vim编辑器(简单) (1)vi/vim基本用法。 (2)vi/vim基础操作。 进程基础操作(简单) (1)fork()函数。 写文件系统函数(中等) ​编辑 (1)C语言读取文件。 (2)C语言写入文件。 1、write()函数。  读文件系统函数(简单) (1)read()函数。 作者本人的操作系统实训复习笔记 Linux

HarmonyOS NEXT:华为开启全新操作系统时代

在全球科技浪潮的汹涌澎湃中,华为再次以创新者的姿态,引领了一场关于操作系统的革命。HarmonyOS NEXT,这一由华为倾力打造的分布式操作系统,不仅是对现有技术的一次大胆突破,更是对未来智能生活的一次深邃展望。 HarmonyOS NEXT并非简单的迭代升级,而是在华为多年技术积淀的基础上,对操作系统的一次彻底重构。它采用微内核架构,摒弃了传统的宏内核模式,实现了模块化和组件化的设计理念

Linux操作系统段式存储管理、 段页式存储管理

1、段式存储管理 1.1分段 进程的地址空间:按照程序自身的逻辑关系划分为若干个段,每个段都有一个段名(在低级语言中,程序员使用段名来编程),每段从0开始编址。内存分配规则:以段为单位进行分配,每个段在内存中占连续空间,但各段之间可以不相邻。 分段系统的逻辑地址结构由段号(段名)和段内地址(段内偏移量)所组成。 1.2段表 每一个程序设置一个段表,放在内存,属于进程的现场信息

2023-2024 学年第二学期小学数学六年级期末质量检测模拟(制作:王胤皓)(90分钟)

word效果预览: 一、我会填 1. 1.\hspace{0.5em} 1. 一个多位数,亿位上是次小的素数,千位上是最小的质数的立方,十万位是 10 10 10 和 15 15 15 的最大公约数,万位是最小的合数,十位上的数既不是质数也不是合数,这个数是 ( \hspace{4em} ),约等于 ( \hspace{1em} ) 万 2. 2.\hspace{0.5em} 2.

【Linux详解】冯诺依曼架构 | 操作系统设计 | 斯坦福经典项目Pintos

目录 一. 冯诺依曼体系结构 (Von Neumann Architecture) 注意事项 存储器的意义:缓冲 数据流动示例 二. 操作系统 (Operating System) 操作系统的概念 操作系统的定位与目的 操作系统的管理 系统调用和库函数 操作系统的管理: sum 三. 系统调用实现示例:Pintos 项目 Step 1:进入 examples 目录 St

读 深入JAVA虚拟机第二版

JAVA虚拟机 一 安全 沙箱安全模型 传统的安全模式中,运行一个软件前你必须信任他,而沙箱安全模型接收任何来源的代码,沙箱限制了此段代码进行可能破坏系统的任何动作 组成JAVA沙箱的基本组件如下: 类装载器体系结构class文件检验器内置于JAVA虚拟机的安全特性安全管理器及JAVA API 类装载器体系结构 他防止恶意代码去干涉善意的代码 命名空间: 在JAVA虚拟机中,在同一个命名

【操作系统】第五章 文件系统

文件系统 5.1 概述5.2 文件5.2.1 文件及文件系统的概念5.2.2 文件的属性5.2.3 文件的操作5.2.4 文件的类型文件分类 5.3 文件的访问文件的逻辑结构顺序文件顺序文件的优缺点 索引文件索引顺序文件直接文件和哈希文件 5.4 文件保护5.5 文件目录文件控制块(FCB)文件控制块的内容 文件目录索引结点磁盘索引结点内存索引结点 单级目录结构二级目录结构多级目录结构

biostar handbook: 第四周笔记汇总+第五周任务布置

不知不觉已经过去了四周,这个系列的开篇语写于2017年10月14日,距离今天差不多是一个月的时间了。这个月的时间学的内容并不算多,大致也就是如下几个内容: *nux基础: 这个尤为重要,学会了*nix(Linux或unix)之后,如果能够在日常科研生活中进行使用,那么你的效率将会大大提高。数据格式: 数据的保存具有一定的格式,处理数据的前提在于知己知彼,这样才能选择合适的工具。这个部分内容包括知