本文主要是介绍【ATC】:XOR Matching 2 位运算 + 思维,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
传送门
题意
给你一个序列 a i a_i ai和一个序列 b i b_i bi,可以改变 b i b_i bi的顺序,要求 a i ⊕ b i a _i\oplus b_i ai⊕bi 为定值 x x x,求 x x x所有可能的值
分析
a ⊕ b = x a \oplus b = x a⊕b=x 等价于 a = b ⊕ x a =b \oplus x a=b⊕x,枚举一下答案即可
代码
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 10;
const ll mod = 1000000007;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}
ll a[N],b[N],c[N];
int n;
vector<ll> ans;
map<ll,bool> M;int main() {read(n);for(int i = 1;i <= n;i++) read(a[i]),M[a[i]] = true;for(int i = 1;i <= n;i++) read(b[i]);sort(b + 1,b + 1 + n);for(int i = 1;i <= n;i++){ll x = b[i] ^ a[1];for(int j = 1;j <= n;j++) c[j] = x ^ a[j];sort(c + 1,c + 1 + n);bool flag = true;for(int j = 1;j <= n;j++) if(c[j] != b[j]){flag = false;break;}if(flag) ans.pb(x);}sort(all(ans));ans.erase(unique(all(ans)),ans.end());cout << ans.size() << endl;for(ll t:ans) dl(t);return 0;
}
这篇关于【ATC】:XOR Matching 2 位运算 + 思维的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!