使用DSP28335在CCS中生成正弦波

2024-04-12 23:36

本文主要是介绍使用DSP28335在CCS中生成正弦波,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  DSP芯片支持数学库,那如何通过DSP芯片生成一个正弦波呢?通过几天研究,现在将我的方法分享一下,如有错误,希望大家及时指出,共同进步。

sin函数的调用

  首先看下一sin函数 的使用。

//头文件的定义
#include"math.h"
#define PI    3.1415926           //定义圆周率float sin1;
float signal1[1000];
void sinetest(void)
{sin1 = sin(0 * PI);             //0度  0.0sin1 = sin(1.0 / 6.0 * PI);     //30度 0.5sin1 = sin(1.0 / 4.0 * PI);     //45度 0.707sin1 = sin(1.0 / 3.0 * PI);     //60度   0.866sin1 = sin(1.0 / 2.0 * PI);     //90度 1.0sin1 = sin(2.0 / 3.0 * PI);     //120度 0.866sin1 = sin(3.0 / 4.0 * PI);     //135度 0.707sin1 = sin(5.0 / 6.0 * PI);     //150度 0.5sin1 = sin(1 * PI);             //180度 0sin1 = sin(7.0 / 6.0 * PI);     //210度 -0.4999sin1 = sin(5.0 / 4.0 * PI);     //225度 -0.707sin1 = sin(4.0 / 3.0 * PI);     //240度 -0.866sin1 = sin(3.0 / 2.0 * PI);     //270度 -1.0sin1 = sin(5.0 / 3.0 * PI);     //300度 -0.866sin1 = sin(7.0 / 4.0 * PI);     //315度 -0.707sin1 = sin(11.0 / 6.0 * PI);    //330度 -0.5sin1 = sin(2 * PI);             //360度 0
}

  这里用一个函数简单的测试一下,添加 math.h 头文件之后就可以直接使用sin函数了。通过这几个测试可以看出来,这里的sin函数里面使用的是弧度。也就是说一个周期的值是0到2π。生成的曲线是1到-1的正弦波。

生成单周期sin波

  如果想要直接使用sin函数生成一个正弦波数组的话,就需要控制里面的参数在0到2π之间。根据公式Φ=ωt=2πft可以看出如果要生成一个50Hz的正弦波的话,只有t是变化的,那么就需要在程序中控制这个t的值。频率50Hz,对于t的值就为0.02s。
当t的值从0增加到0.02时。f*t的值为1,刚好一个周期。
  这里使用一段代码测试一下,假如要生成50Hz的波,一个周期用50个点来组成,那么程序就修改为下面的样子。

void sin_test(void)
{int i;float t;float f = 50;for (i = 0; i < 50; i++){t =i * ( 1.0 / f / 50);sin1 = sin(2 * PI * f * t);signal1[i] = sin1;}
}

  由于数组的下标只能是整数,所以这里要进行一些处理。f=50,那么周期就是1/50=0.02s,如果要在0.02s内生成50个数据,那么一个数据需要的时间就是0.02/50=0.0004s。然后用for循环来控制生成数据的个数。用数组的下标乘每个数据需要的时间0.0004s,这样生成50个数据之后,时间值t刚好就是0.02s,然后再乘频率f,这样
ft 相乘结果刚好就是1。

  运行这段代码,查看数组中的数据。
在这里插入图片描述

在数组名上单击鼠标右键,将数组添加到观察窗口。
在这里插入图片描述
在观察窗口就可以查看数组中的值,此时数组中的值全是0,这是由于程序打了断点,还没运行到sin计算的函数。
在这里插入图片描述

点击单步运行,执行sin_test()函数。
在这里插入图片描述
这时就可以看到已经成功生成了一组数据,总共50个数据,从零开始增加到1,然后减小到-1,在增加到0,刚好是一组正弦变换的数据。

显示sin波形

  也可以使用ccs中波形显示工具,将生成的数据打印成波形查看。工具栏中选择
Tools—Graph—Single Time
在这里插入图片描述
设置要显示的波形参数
在这里插入图片描述
按照上面的参数进行设置,设置完成之后点OK按钮。
在这里插入图片描述
此时就会将数组中的数据用图形绘制出来,可以看到这是一个标准的正弦波。

生成2个周期sin波

  上面生成了一组正弦波,将for循环的次数改为100次,那么就会在数组中生成两组正弦波的数据。

void sin_test(void)
{int i;float t;float f = 50;for (i = 0; i < 100; i++){t =i * ( 1.0 / f / 50);sin1 = sin(2 * PI * f * t);signal1[i] = sin1;}
}

在这里插入图片描述
在数组中可以看到总共100个数据。
然后修改波形显示参数,这个参数可以直接在工具栏中选择,也可以在波形显示界面直接点属性设置的图标。
在这里插入图片描述
点击两个红叉后面的那个图标就会打开属性设置框。
在这里插入图片描述
将显示数据的大小改为100,这时候就会看到显示的波形从一个周期变为了2个周期。

  这时可以将一个周期采样50个点修改为100个点。
在这里插入图片描述
波形显示从两个周期又变回了一个周期。

宏定义参数

  为了方便修改参数,将每个周期采样的点数,和总共采样的点数设置为宏定义。修改代码如下。

#define PI    3.1415926           //定义圆周率
#define F     50                  //正弦波频率
#define TN    100                 //每个周期需要采样的点数
#define N     500                //总共采样的点数,数组大小float sin1;
float signal1[1000];void sin_test1(void)
{int i;float t;for (i = 0; i < N; i++){t =i * ( 1.0 / F / TN);sin1 = sin(2 * PI * F * t);signal1[i] = sin1;}
}

  将宏定义设置为每个周期采样100个点,总共采样500个点,也就是5个周期。

在这里插入图片描述
将波形采样点设置为500
在这里插入图片描述
此时可以看出输出了5个周期的波形。

  在上面代码中计算时间时1.0 / F / TN需要进行两次除法,可以将N和TN这两个参数直接合并为一个。

#define PI    3.1415926           //定义圆周率
#define F     50                  //正弦波频率
#define TN    100                 //每个周期需要采样的点数
#define N     500                //总共采样的点数,数组大小
#define FS    5000               //采样频率  FS = TN *Fvoid sin_test2(void)
{int i;float t;for (i = 0; i < N; i++){t = i * (1.0 / FS);sin1 = sin(2 * PI * F * t);signal1[i] = sin1;}
}

这里增加一个宏定义采样频率 FS,替换掉原来连续两次除法。当然为了让计算步骤更少,也可以将
2 * PI * F这三个数相乘的结果也用一个宏定义来表示,这里为了代码阅读起来比较容易,就不合并了。

测试波形周期

再次运行代码,同时将波形显示里面的采样频率修改为FS的值5000,其他设置参数不变。
在这里插入图片描述
此时在波形显示窗口就可看到,一个波形的周期刚好是20ms。总共显示5个周期。
在这里插入图片描述

生成sin、cos波形

  生成波形的代码框架已经好了,接下来就直接生成一组sin波形,一组cos波形。在原来的代码上增加一个cos波形的生成,使用第2个数组存储cos的波形。

//头文件的定义
#include"stdio.h"
#include"math.h"
#include"string.h"#define PI    3.1415926           //定义圆周率
#define F     50                  //正弦波频率
#define TN    100                 //每个周期需要采样的点数
#define N     500                 //总共采样的点数,数组大小
#define FS    5000                //采样频率  FS = TN * F#define Sample_points    1000     //采样点数
float signal1[Sample_points];
float signal2[Sample_points];float sin1;
float sin2;void sin_test3(void)
{int i;float t;for (i = 0; i < N; i++){t = i * (1.0 / FS);sin1 = sin(2 * PI * F * t);signal1[i] = sin1;sin2 = cos(2 * PI * F * t);signal2[i] = sin2;}
}

按照上面的方法将第二个数组的波形也显示出来。
在这里插入图片描述

生成三相sin波形

  接下来就可以生成三相波形了。要生成三相波首先得知道三相波形的样子,这里使用PSIM仿真软件直接查看三相波形。

放置一个三相波,然后用示波器查看每一相的波形。
在这里插入图片描述
在这里插入图片描述
点开这个模型,查看帮助文档,可以看到波形生成的具体方式。
在这里插入图片描述
在这里插入图片描述
通过帮助文档可以看出,a相相位为0度,b相相位为-120度,c相相位为120度。

按照这种相位关系自己用三个独立的正弦波通过相位的调整组合出一个三相波。
在这里插入图片描述
通过波形可以看出,通过对相位的控制,就可以生成三相正弦波了。

按照这种方法直接在程序里面生成三相正弦波,修改代码如下:

#include "DSP2833x_Device.h"     // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h"   // DSP2833x Examples Include File
//头文件的定义
#include"math.h"#define PI    3.1415926           //定义圆周率
#define F     50                  //正弦波频率
#define TN    100                 //每个周期需要采样的点数
#define N     500                 //总共采样的点数,数组大小
#define FS    5000                //采样频率  FS = TN * F
#define Sample_points    1000     //采样点数float signal1[Sample_points];
float signal2[Sample_points];
float signal3[Sample_points];float sin1;
float sin2;
float sin3;void clear_buf(void)
{int i;for (i = 0; i < Sample_points; i++){signal1[i] = 0;signal2[i] = 0;signal3[i] = 0;}
}void sin_3ph(void)
{int i;float t;for (i = 0; i < N; i++){t = i * (1.0 / FS);sin1 = sin(2 * PI * F * t);                 //生成a相波 相位0度signal1[i] = sin1;sin2 = sin(2 * PI * F * t - 2.0 / 3.0 * PI); //生成b相波 相位-120度signal2[i] = sin2;sin3 = sin(2 * PI * F * t + 2.0 / 3.0 * PI); //生成C相波 相位 120度signal3[i] = sin3;}
}
void main()
{InitSysCtrl();InitPieCtrl();IER = 0x0000;IFR = 0x0000;InitPieVectTable();clear_buf();sin_3ph();while (1);
}

将三相波形都显示出来

在这里插入图片描述
通过代码生成的三相正弦波波形和PSIM仿真的波形是一样的。

生成三相cos波形

接下来在生成余弦的三相波形,首先在PSIM中看一下余弦的三相波形,由于PSIM中没有余弦的模型,这里将三相正弦信号的初始相位修改为90度,这样发出的波形就是余弦波形了。
在这里插入图片描述
通过示波器观察三相波形的相位关系。
在这里插入图片描述
将上面代码中的sin直接修改为cos。

#include "DSP2833x_Device.h"     // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h"   // DSP2833x Examples Include File
//头文件的定义
#include"math.h"#define PI    3.1415926           //定义圆周率
#define F     50                  //正弦波频率
#define TN    100                 //每个周期需要采样的点数
#define N     500                 //总共采样的点数,数组大小
#define FS    5000                //采样频率  FS = TN * F
#define Sample_points    1000     //采样点数float signal1[Sample_points];
float signal2[Sample_points];
float signal3[Sample_points];float sin1;
float sin2;
float sin3;void clear_buf(void)
{int i;for (i = 0; i < Sample_points; i++){signal1[i] = 0;signal2[i] = 0;signal3[i] = 0;}
}void cos_3ph(void)
{int i;float t;for (i = 0; i < N; i++){t = i * (1.0 / FS);sin1 = cos(2 * PI * F * t); //生成a相波signal1[i] = sin1;sin2 = cos(2 * PI * F * t - 2.0 / 3.0 * PI); //生成b相波signal2[i] = sin2;sin3 = cos(2 * PI * F * t + 2.0 / 3.0 * PI); //生成C相波signal3[i] = sin3;}
}
void main()
{InitSysCtrl();InitPieCtrl();IER = 0x0000;IFR = 0x0000;InitPieVectTable();clear_buf();cos_3ph();while (1);
}

通过波形可以看出代码生成的余弦三相波形和PSIM里面仿真的波形相位关系也是一样的。
在这里插入图片描述
通过直接调用库函数,通过参数的控制,就可以生成想要的各种波形了。

这篇关于使用DSP28335在CCS中生成正弦波的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/898544

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];