利用python进行分类-预测顾客流失(简版)

2024-04-12 16:32

本文主要是介绍利用python进行分类-预测顾客流失(简版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

利用python进行分类-预测顾客流失(简版)

96 
鸣人吃土豆  关注
2017.12.16 16:11  字数 878  阅读 166 评论 4 赞赏 2

更新内容:第4点c方式
计算准确率的方式(用了sklearn方式)


由于每个算法都基于某些特定的假设,且均含有某些缺点,因此需要通过大量的实践为特定的问题选择合适的算法。可以这么说:没有任何一种分类器可以在所有的情况下都有良好的表现。
分类器的性能,计算能力,预测能力在很大程度上都依赖于用于模型的相关数据。训练机器学习算法涉及到五个主要的步骤:

  • 1.特征的选择
  • 2.确定性能评价标准
  • 3.选择分类器及其优化算法
  • 4.对模型性能的评估
  • 5.算法的调优

写在前面:接下来的我们通过一些电信数据来看看一些常用的分类器的简单情况(默认参数),通过这些分类器来预测客户是否会流失。这次是一些比较简单的做法,有空再来完善,比如超参调优等。


1.加载数据

数据下载链接https://pan.baidu.com/s/1bp8nloV

import pandas as pd
data = pd.read_csv("customer_churn.csv",header=0,index_col=0)
data.head()

但是在读取的过程中出现了如下错误:

OSError:Initializing from file failed

查看了源码,应该是调用pandas的read_csv()方法时,默认使用C engine作为parser engine,而当文件名中含有中文的时候,用C engine在部分情况下就会出错

所以解决方案有二:

  • 1.将文件路径的中文替换掉
  • 2.在read_csv中加入engine=‘python’参数,即:
data = pd.read_csv("C:\\Users\\Administrator\\OneDrive\\公开\\customer_churn.csv",header=0,index_col=0,engine='python')

2.查看数据

data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3333 entries, 1 to 3333
Data columns (total 20 columns):
state                            3333 non-null object
account_length                   3333 non-null int64
area_code                        3333 non-null object
international_plan               3333 non-null object
voice_mail_plan                  3333 non-null object
number_vmail_messages            3333 non-null int64
total_day_minutes                3333 non-null float64
total_day_calls                  3333 non-null int64
total_day_charge                 3333 non-null float64
total_eve_minutes                3333 non-null float64
total_eve_calls                  3333 non-null int64
total_eve_charge                 3333 non-null float64
total_night_minutes              3333 non-null float64
total_night_calls                3333 non-null int64
total_night_charge               3333 non-null float64
total_intl_minutes               3333 non-null float64
total_intl_calls                 3333 non-null int64
total_intl_charge                3333 non-null float64
number_customer_service_calls    3333 non-null int64
churn                            3333 non-null object
dtypes: float64(8), int64(7), object(5)
memory usage: 546.8+ KB

3.特征选取

特征其实就是属性、字段等的意思
我们这里采取比较简单的方式,直接将state 、account_length 、area_code 这三列去掉,因为和是否流失的关系不大

data = data.ix[:,3:]
data.head()

4.将标称特征的值转换为整数,方便算法的运算

这里的话我们有三种方式

  • a.
var = ['international_plan', 'voice_mail_plan','churn']
for v in var:data[v] = data[v].map(lambda a:1 if a=='yes' else 0)
  • b
#可以用字典的方式
data = pd.read_csv("customer_churn.csv",header=0,index_col=0,engine='python')
data = data.ix[:,3:]
mapping = {'yes':1,'no':0}
var = ['international_plan', 'voice_mail_plan','churn']
for v in var:data[v] = data[v].map(mapping)
  • c
#或者也可以使用sklearn里的LabelEncoder类
from sklearn.preprocessing import LabelEncoder
data = pd.read_csv("customer_churn.csv",header=0,index_col=0,engine='python')
data = data.ix[:,3:]
le = LabelEncoder()
var = ['international_plan', 'voice_mail_plan','churn']
for v in var:data[v] = le.fit_transform(data[v])
data[var].head()

c方式我们可以用以下方式得出将yes和no分别转换成了什么整数

le.transform(['yes','no'])

结果

array([1, 0], dtype=int64)

5.将数据分为测试集和训练集

X=data.ix[:,:-1]
y=data.ix[:,-1]
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=0)

6.1使用决策树进行分类

#使用决策树
from sklearn import tree
clf = tree.DecisionTreeClassifier(max_depth=3)
clf.fit(X_train,y_train)

我们可以通过以下方式将决策树的图导出来,只是在python上相对R来说要麻烦一点,需要下载Graphviz软件,并将其安装目录下的bin文件夹设置在系统变量中

#将决策树的决策过程导出到当前代码文件所在文件夹
tree.export_graphviz(clf,out_file='tree3.dot')

再在cmd中输入以下命令,将dot文件转换为png文件

dot -T png tree.dot -o tree.png

因为本人用的是jupyter notebook,所以要想在jupyter notebookz中插入图片的话,得用以下命令

%pylab inline
from IPython.display import Image
Image("tree.png")

结果如下


tree.png

可以看到决策树最先是以训练集中的第3列特征进行分支的

#检测分类结果
import numpy as np
print("Test accuracy:%.3f" %(np.sum(y_test==clf.predict(X_test))/len(y_test)))

结果为:Test accuracy:0.910

我们可以利用sklearn里面的东西直接计算准确率

#1
print("Test accuracy:%.3f" % clf.score(X_test,y_test))#2
from sklearn.metrics import accuracy_score
print("Test accuracy:%.3f" % accuracy_score(y_test,clf.predict(X_test)))

结果同样都为0.910

6.2逻辑回归

from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X_train,y_train)
print("Test accuracy:%.3f" % clf.score(X_test,y_test))

结果为:Test accuracy:0.870

6.3支持向量机

#使用支持向量机
from sklearn.svm import SVC
clf = SVC()
clf.fit(X_train,y_train)
print("Test accuracy:%.3f" % clf.score(X_test,y_test))

结果为:Test accuracy:0.862

写在最后:从准确率上看,这份数据决策树分类器的泛化能力最好,但是我们这里用的是各个分类器的默认参数,没有进行相关检验,调优,所以目前的结果并不可信,也不能完全按照准确率去比较分类器的优劣

这篇关于利用python进行分类-预测顾客流失(简版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897654

相关文章

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod

Python手搓邮件发送客户端

《Python手搓邮件发送客户端》这篇文章主要为大家详细介绍了如何使用Python手搓邮件发送客户端,支持发送邮件,附件,定时发送以及个性化邮件正文,感兴趣的可以了解下... 目录1. 简介2.主要功能2.1.邮件发送功能2.2.个性签名功能2.3.定时发送功能2. 4.附件管理2.5.配置加载功能2.6.

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Python如何使用seleniumwire接管Chrome查看控制台中参数

《Python如何使用seleniumwire接管Chrome查看控制台中参数》文章介绍了如何使用Python的seleniumwire库来接管Chrome浏览器,并通过控制台查看接口参数,本文给大家... 1、cmd打开控制台,启动谷歌并制定端口号,找不到文件的加环境变量chrome.exe --rem

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea