基于STM32的SNTP授时服务器的研究与设计

2024-04-12 02:18

本文主要是介绍基于STM32的SNTP授时服务器的研究与设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要:针对工控领域对时间同步的要求,给出了以STM32和W5100为核心来搭建网络硬件平台,并在其上实现简单网络时间协议(SNTP),从而建立嵌入式授时服务器的设计与实现方法。该系统运行稳定,能够实现网络时间同步。
关键词:STM32处理器;SNTP授时;简单网络时间协议;时间同步

O 引言
    随着信息技术和网络技术的飞速发展,网络互连已经渗透到国民经济的各行各业。而网络时间同步也越来越受到重视,特别是局域网时间同步在国家安全和国民经济的诸多领域(如国防军工、电信网、金融业、交通运输、电子商务和电力系统等部门)越发不可或缺。随着嵌入式技术的发展,嵌入式与网络时间同步技术的结合,无疑具有良好的发展前景。

1 方案设计
    目前网络授时的实现方法有很多种,本文采用自行设计的嵌入式系统并在上面实现SNTP协议。从而完成网络时间的同步。其系统框图如图l所示。

2a.JPG


    本系统采用C/S模型,分为网络授时同步服务器和客户端两大部分,本文主要对网络授时服务器部分进行研究。
    在网络授时同步服务器中,处理器STM32f103由内部RTC模块结合日历算法来给出时间信息(年月日时分秒),再从GPS获取时间信息,并修正自己的时间,最后结合W5100芯片搭建出一个时间服务器。当客户端向服务器发出请求时,便可同步地统一客户端的时间信息,并达到ms级精度。网络传输时需实现SNTP应用层协议,设计中通过构造SNTP协议包,并根据同步算法可计算出包交换的往返延迟。
    本系统采用ST公司基于Cortex-M3内核的STM32系列处理器.Cortex-M3内核是专门用于设计高性能、低功耗、低成本、实时性嵌入式应用
系统的处理器核,它在提升性能的同时,又提高了代码密度的Thumb-2指令集,同时也大幅度提高了中断响应的紧耦合嵌套向量中断控制器的性能。所有新功能都同时具有业界最优的功耗水平。
    TCP/IP协议栈的实现采用的固件芯片W5100是韩国WIZnet公司推出的固件网络芯片,它集TCP/IP协议栈、以太网MAC和PHY为一体,可支
持TCP,UDP、ICMP、IGMP、IPv4、ARP,PPPoE、Ethemet等网络协议;同时支持4个独立的Socket通信,内部16 K字节的发送/接收缓冲区可
快速进行数据交换,最大通信速率可达到25Mbps。此外,W5100还内嵌10BaseT/100BaseTX以太网物理层,可支持自动应答(全双工/半双工
模式),并提供多种总线(两种并行总线和SPI总线)接口方式,可以方便地与各种MCU连接。W5100器件的推出大大简化了硬件电路设计,可使微控制器在没有操作系统支持的情况下,真正的实现单芯片接入Internet。[!--empirenews.page--]

2 SNTP协议分析
    SNTP即简单网络时间协议,它是一个用于局域网子网末端的时间同步协议,其要求在操作过程中只允许存在一个可靠的同步时钟源,是
NTP协议的一个简化版本。
2.1 SNTP的同步原理
    SNTP协议主要通过同步算法来交换时间服务器和客户端的时间戳,从而估算出数据包在网络上的往返延迟,进而独立地估算系统的时钟偏差。它的时间同步原理的传输模型如图2所示。

2b.JPG


    图2中,T1为客户方发送查询请求时间(以客户方时间系统为参照),T2为服务器收到查询请求时间(以服务器时间系统为参照),T3为服务器回复时间信息包时间(以服务器时间系统为参照),T4为客户方收到时间信息包时间(以客户方时间系统为参照),D1为请求信息在网上传播所消耗的时间,D2为回复信息在网上传播所消耗的时间。假设请求和回复在网上的传播时间相同,即:δ1=δ2,则可得出如下公式:
    2c.JPG
    式中,θ为客户端时间与标准时间之差,δ为信息在网上传播的时间。可以看到,θ、δ只与T2、T1的差值和T4、T3的差值相关,而与T2、T3的差值无关,即最终的结果与服务器处理请求所需的时间无关。据此,客户端(CLIENT)即可通过T1、T2、T3、T4十算出的时差0去调整本地时钟。
2.2 SNTP协议格式
    SNTP消息一般封装在UDP报文中,UDP的端口号是123,UDP头中的源端口和目的端口是一样的。SNTP消息紧跟在IP和UDP报头之后,其协
议格式如图3所示。

2d.JPG


    图3中,U为跳跃指示器,可警告在当月最后一天的最终时刻插入的迫近闺秒(闺秒)。VN表示版本号。Mode为模式,该字段包括以下值:
O(预留);1(对称行为);3(客户机);4(服务器);5(广播);6(NTP控制信息)。Stratum用于对本地时钟级别的整体识别。Poll表示有符号整
数表示连续信息间的最大间隔。Precision表示有符号整数,表示本地时钟精确度。Root Delay为有符号固定点序号,表示主要参考源的总延迟,如很短时间内的15到16间的分段点。Root Dispersion为无符号固定点序号表示相对于主要参考源的正常差错,如很短时间内的位15到16间的分段点。[!--empirenews.page--]
    Reference Identifier为识别特殊参考源。Originate Timestamp是向服务器请求分离客户机的时间,采用64位时标(Timestamp)格式。  Receive Timestamp是向服务器请求到达客户机的时间。也采用64位时标(Timestamp)格式。Transmit Timestamp是向客户机答复分离服务器的时间。采用64位时标(Timestamp)格式。

3 硬件设计
    图4所示为W5100部分的电路图,图中给出了W5100与STM32的连接方式及其外围电路。

2e.JPG


    W5100和STM32可通过SPI方式通信。通过对SEN管脚用10 kΩ电阻上拉到高电平可允许SPI模式;由于W5100处于SPI从模式,因此,其SPI工作时钟由处于主模式的STM32提供,MISO和MOSI为用于SPI通信的两条数据线,SCLK为SPI时钟引脚;*****为片选引脚,低电平有效,主要用于在并行总线连接时由MCU访问W5100内部寄存器或存储器;INT为中断输出引脚,低电平有效,在W5100在Socket端口产生连接、断开、接收数据、数据发送完成以及通信超时等情况下,该引脚将输出信号以指示MCU。中断将在写入中断寄存器IR或端口的中断寄存器时被清除,所有中断都可以被屏蔽。W5100的第5、6、8和9脚是以太网物理层信号引脚,用于与RJ45接口相连接,其中第5和第6引脚是RXIP/RXlN信号对,用于接收从介质传来的差分数据,第8和第9引脚是TXOP/TXON信号对,用于将差分数据发送给介质;第66引脚是连接LED指示引脚,低电平表示10/100Mbps连接状态正常,连接正常时输出低电平,而在TX/RX状态时闪烁;第72引脚是接收状态LED指示引脚,低电平表示当前接收数据,第73引脚是发送状态LED指示引脚,低电平表示当前发送数据,这些LED指示引脚应与RJ45的相应LED指示灯引脚连接,以用于指示连接状态。除电源引脚、时钟引脚外,W5100的其它引脚DO~D7,AO~A14及WR~RD可选择悬空。[!--empirenews.page--]

2e.JPG


    图5所示是GPS模块与STM32的连接示意图。GPS接收模块采用HOLUX生产的GPS模块M87GPS,模块的串行口输出和输入分别接到STM32的输入与输出,秒脉冲PPS信号连接到处理器的IO口,在秒脉冲(1PPS)同步的情况下,系统将实时精准地通过串口把标准的UTC时间传送给处理器STM32。

4 SNTP服务器的软件设计
    SNTP服务器的软件设计主要可分为两个部分:W5100的驱动设计和SNTP协议的软件实现。其软件流程图如图6所示。

2g.JPG


    首先,利用ST公司提供的固件库可初始化STM32的系统配置,把SPI接口配置为两线单向全双工传输、主模式,以8位数据帧的格式进行传
输;同时配置RTC模块产生秒脉冲,再与日历算法结合得到自身的系统时间,然后通过GPS的秒脉冲PPS修正系统时间。再通过配置W5100公共
寄存器和端口寄存器来完成它的基本设置、网络信息以及端口存储器信息的没置,使之为UDP服务器模式。此后,W5100处于监听状态,一旦
W5100的SOCKET端口有中断事件,W5100将触发STM32的外部中断,STM32若检测到SoekRecvflag发生改变,则立即开始SNTP协议的解析。
    接收SNTP协议包后,便可记录收到报文的时间T2,然后从报文中解析出时间戳T1,再将T1、T2封装成新的报文进行发送,同时发送时再记录一个发送时间T3。

5 结束语
    本文基于STM32和W5100搭建了一个网络服务器硬件平台,并在其上实现了SNTP同步时间报文。经测试,本系统运行稳定,并可实现对客
户端PC机的时钟同步。通过该系统可有效解决工业控制等领域的时间不同步问题。

https://www.21ic.com/embed/jiaocheng/sheji/201009/2282.html

这篇关于基于STM32的SNTP授时服务器的研究与设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/895827

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

怎么让1台电脑共享给7人同时流畅设计

在当今的创意设计与数字内容生产领域,图形工作站以其强大的计算能力、专业的图形处理能力和稳定的系统性能,成为了众多设计师、动画师、视频编辑师等创意工作者的必备工具。 设计团队面临资源有限,比如只有一台高性能电脑时,如何高效地让七人同时流畅地进行设计工作,便成为了一个亟待解决的问题。 一、硬件升级与配置 1.高性能处理器(CPU):选择多核、高线程的处理器,例如Intel的至强系列或AMD的Ry

Linux服务器Java启动脚本

Linux服务器Java启动脚本 1、初版2、优化版本3、常用脚本仓库 本文章介绍了如何在Linux服务器上执行Java并启动jar包, 通常我们会使用nohup直接启动,但是还是需要手动停止然后再次启动, 那如何更优雅的在服务器上启动jar包呢,让我们一起探讨一下吧。 1、初版 第一个版本是常用的做法,直接使用nohup后台启动jar包, 并将日志输出到当前文件夹n

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机

SprinBoot+Vue网络商城海鲜市场的设计与实现

目录 1 项目介绍2 项目截图3 核心代码3.1 Controller3.2 Service3.3 Dao3.4 application.yml3.5 SpringbootApplication3.5 Vue 4 数据库表设计5 文档参考6 计算机毕设选题推荐7 源码获取 1 项目介绍 博主个人介绍:CSDN认证博客专家,CSDN平台Java领域优质创作者,全网30w+

STM32(十一):ADC数模转换器实验

AD单通道: 1.RCC开启GPIO和ADC时钟。配置ADCCLK分频器。 2.配置GPIO,把GPIO配置成模拟输入的模式。 3.配置多路开关,把左面通道接入到右面规则组列表里。 4.配置ADC转换器, 包括AD转换器和AD数据寄存器。单次转换,连续转换;扫描、非扫描;有几个通道,触发源是什么,数据对齐是左对齐还是右对齐。 5.ADC_CMD 开启ADC。 void RCC_AD

STM32内部闪存FLASH(内部ROM)、IAP

1 FLASH简介  1 利用程序存储器的剩余空间来保存掉电不丢失的用户数据 2 通过在程序中编程(IAP)实现程序的自我更新 (OTA) 3在线编程(ICP把整个程序都更新掉) 1 系统的Bootloader写死了,只能用串口下载到指定的位置,启动方式也不方便需要配置BOOT引脚触发启动  4 IAP(自己写的Bootloader,实现程序升级) 1 比如蓝牙转串口,

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系