【图像去噪】基于matlab即插即用法图像去噪(含PSNR)【含Matlab源码 152期】

2024-04-11 09:08

本文主要是介绍【图像去噪】基于matlab即插即用法图像去噪(含PSNR)【含Matlab源码 152期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、简介

理论知识参考文献:基于Retinex和ADMM优化的水下光照不均匀图像增强算法

⛄二、部分源代码

function out = PlugPlayADMM_deblur(y,h,lambda,method,opts)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%out = PlugPlayADMM_deblur(y,h,lambda,method,opts)
%deblurs image y by solving the ADMM:
%
%inversion step: x=argmin_x(||Ax-y||2+rho/2||x-(v-u)||2)
%denoising step: v=Denoise(x+u)
% update u: u=u+(x-v)
%
%Input: y - the observed gray scale image
% h - blur kernel
% lambda - regularization parameter
% method - denoiser, e.g., ‘BM3D’
% opts.rho - internal parameter of ADMM {1}
% opts.gamma - parameter for updating rho {1}
% opts.maxitr - maximum number of iterations for ADMM {20}
% opts.tol - tolerance level for residual {1e-4}
% ** default values of opts are given in {}.
%
%Output: out - recovered gray scale image
%
%Xiran Wang and Stanley Chan
%Copyright 2016
%Purdue University, West Lafayette, In, USA.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Check inputs
if nargin<4
error(‘not enough input, try again \n’);
elseif nargin==4
opts = [];
end

% Check defaults
if ~isfield(opts,‘rho’)
opts.rho = 1;
end
if ~isfield(opts,‘max_itr’)
opts.max_itr = 20;
end
if ~isfield(opts,‘tol’)
opts.tol = 1e-4;
end
if ~isfield(opts,‘gamma’)
opts.gamma=1;
end
if ~isfield(opts,‘print’)
opts.print = false;
end

% set parameters
max_itr = opts.max_itr;
tol = opts.tol;
gamma = opts.gamma;
rho = opts.rho;

%initialize variables
dim = size(y);
N = dim(1)*dim(2);
Hty = imfilter(y,h,‘circular’);
eigHtH = abs(fftn(h, dim)).^2;

residual = inf;

%set function handle for denoiser
switch method
case ‘BM3D’
denoise=@wrapper_BM3D;
case ‘TV’
denoise=@wrapper_TV;
case ‘NLM’
denoise=@wrapper_NLM;
case ‘RF’
denoise=@wrapper_RF;
otherwise
error(‘unknown denoiser \n’);
end

% main loop

if opts.print==true
fprintf(‘Plug-and-Play ADMM — Deblurring \n’);
fprintf(‘Denoiser = %s \n\n’, method);
fprintf(‘itr \t ||x-xold|| \t ||v-vold|| \t ||u-uold|| \n’);
end

itr = 1;
while(residual>tol&&itr<=max_itr)
%store x, v, u from previous iteration for psnr residual calculation
x_old = x;
v_old = v;
u_old = u;

%inversion step
xtilde = v-u;
rhs    = fftn(Hty+rho*xtilde,dim);
x      = real(ifftn(rhs./(eigHtH+rho),dim));%denoising step
vtilde = x+u;
vtilde = proj(vtilde);
sigma  = sqrt(lambda/rho);
v      = denoise(vtilde,sigma);%update langrangian multiplier
u      = u + (x-v);%update rho
rho = rho*gamma;%calculate residual
residualx = (1/sqrt(N))*(sqrt(sum(sum((x-x_old).^2))));
residualv = (1/sqrt(N))*(sqrt(sum(sum((v-v_old).^2))));
residualu = (1/sqrt(N))*(sqrt(sum(sum((u-u_old).^2))));residual = residualx + residualv + residualu;if opts.print==truefprintf('%3g \t %3.5e \t %3.5e \t %3.5e \n', itr, residualx, residualv, residualu);
enditr = itr+1;

end
out = v;
end
function y = afun(x,transp_flag,h,dim)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Example of the A matrix
%
% This example illustrates how to construct the A matrix
% for deblurring problem. The function executes the operations of
% A*x and A’*x
%
% Stanley Chan
% Purdue University
% Nov 24, 2016
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rows = dim(1);
cols = dim(2);
if strcmp(transp_flag,‘transp’) % y = A’x
x = reshape(x,[rows,cols]);
y = imfilter(x,rot90(h,2),‘circular’);
y = y(😃;
elseif strcmp(transp_flag,‘notransp’) % y = A
x
x = reshape(x,[rows,cols]);
y = imfilter(x,h,‘circular’);
y = y(😃;
end
end
function out = wrapper_NLM(in,sigma)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% out = wrapper_NLM(in,sigma)
% performs non-local means denoising
%
% Require NLM package
%
% Download:
% http://www.ipol.im/pub/art/2011/bcm_nlm/
%
% Xiran Wang and Stanley Chan
% Copyright 2016
% Purdue University, West Lafayette, In, USA.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Options.filterstrength=sigma;
out = NLMF(in,Options);
end

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]刘卫东,李吉玉,张文博,李乐.基于Retinex和ADMM优化的水下光照不均匀图像增强算法[J].西北工业大学学报. 2021,39(04)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【图像去噪】基于matlab即插即用法图像去噪(含PSNR)【含Matlab源码 152期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893649

相关文章

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

matlab读取NC文件(含group)

matlab读取NC文件(含group): NC文件数据结构: 代码: % 打开 NetCDF 文件filename = 'your_file.nc'; % 替换为你的文件名% 使用 netcdf.open 函数打开文件ncid = netcdf.open(filename, 'NC_NOWRITE');% 查看文件中的组% 假设我们想读取名为 "group1" 的组groupName

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87