本文主要是介绍【图像压缩】基于matlab JEPG图像压缩【含Matlab源码 1167期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)
⛄一、DCT图像无损压缩简介
1 图像压缩
图像压缩按照压缩过程中是否有信息的损失以及解压后与原始图像是否有误差可以分为无损压缩和有损压缩两大类。无损压缩是指不损失图像质量的压缩,它是对文件的存储方式进行优化,采用某种算法表示重复的数据信息,文件可以完全还原,不会影响文件内容。一般来说,由于无损压缩只是删除了图像数据中的冗余信息,可以准确地恢复原始图像,所以不可能达到很高的压缩比。有损压缩是指损失图像质量的压缩,它将不相干的信息也删除了,因此解压时只能将原始图像进行近似的还原,它的高压缩比是以牺牲图像质量为代价的。
2 JPRG图像压缩
JPEG 提出的 JPEG 标准是为连续色调图像的压缩提供的公共标准。连续色调图像并不局限于单色调( 黑白) 图像,该标准可适用于各种多媒体存储和通信应用所使用的灰度图像、摄影图像及静止视频压缩文件。
JPEG 标准还提出:
①必须将图像质量控制在可视保真度高的范围内,同时编码器可被参数化,允许设置压缩或质量水平
②压缩标准可以应用于任何一类连续色调数字图像,并不应受到维数、颜色、画面尺寸、内容和色调的限制
③压缩标准必须从完全无损到有损范围内可选,以适应不同的存储 CPU 和显示要求
图像压缩编码方法从压缩编码算法原理上可以分为无损压缩编码、有损压缩编码、混合编码方法。而JPEG 标准就是一种混合编码方法,既有无损的压缩编码又有有损的压缩编码。有损压缩方法是以 DCT 变换为基础的压缩方法,其压缩率比较高,是JPEG 标准的基础。无损压缩方法又称预测压缩方法,是以二维 DPCM 为基础的压缩方式,解码后能完全精确地恢复原图像采样值,其压缩比低于有损压缩方法。
观察下图中的编码器负责降低输入图像的编码、像素间和心理视觉冗余。在编码处理的第一阶段,离散余弦变换器将输入图像变换成一种( 通常不可见的) 格式,以便减少像素间的冗余。在第二阶段,量化器根据预定义的保真度准则来减少映射变换器输出的精确性,以便试图去除心理视觉冗余数据。这种操作是不可逆的,当进行无损压缩时,则必须将其忽略。在第三个即最后一个处理阶段,熵编码器根据所用的码字对量化器输出和离散余弦变换输出创建码字( 减少编码冗余)。
3 二维离散余弦变换
离散余弦变换(Discrete Cosine Transform),简称DCT变换.是一种与傅立叶变换紧密相关的数学运算.在傅立叶级数展开式中,如果被展开的函数是实偶函数,那么其傅立叶级数中只包含余弦项,再将其离散化可导出余弦变换,因此称之为离散余弦变换.余弦变换实际上是傅立叶变换的实数部分,其主要用于图像的压缩,目前国际压缩标准的JPEG格式中就用到了DCT变换。
在编码过程中,首先将输入图像颜色空间转换后分解为8× 8大小的数据块,然后用正向二维DCT把每个块转变成64个DCT系数值,其中1个数值是直流(DC)系数,即8× 8空域图像子块的平均值,其余的63个是交流(AC)系数,接下来对DCT系数进行量化,最后将变换得到的量化的DCT系数进行编码和传送,形成压缩后的图像格式。在解码过程中,先对已编码的量化的DCT系数进行解码,然后使用二维DCT反变换求逆量化并把DCT系数转化为8× 8样本像块,最后将操作完成后的块组合成一个单一的图像。这样就完成了图像的压缩和解压过程.研究表明,DCT将8× 8图像块变换为频域时数值集中在左上角,即低频分量都集中在左上角,高频分量分布在右下脚。而低频部分包含了图像大部分信息,相比之下,高频部分包含的信息量较少。为了压缩数据,往往采用忽略高频系数的办法。而较低频系数的修改对原始数据的影响较小。基于DCT的压缩编码属于有损压缩,通过去除图像本身的冗余量和人的视觉冗余量来达到压缩数据的目的,主要分为以下几个步骤:
(1)正向离散余弦变换
(2)量化
(3)Z字形编码
(4)使用差分脉冲编码调制对直流系数进行编码
(5)使用行程长度编码对交流系数进行编码
(6)熵编码
(7)组成位数据流
4 二维DCT变换
二维离散余弦变换的正变换公式为:
在图像的压缩编码中,N一般取8。
二维DCT的反变换公式为:
以上各式中的系数:
5 Matlab调试
根据JPEG 压缩编码算法,要将一幅灰度图像进行压缩编码,首先把图像分成 8* 8 的像素块,分块进行 DCT 变换后,根据 JPEG 标准量化表对变换系数进行量化,再对直流系数( DC) 进行预测编码,对交流系数( AC) 行 zigzag 扫描和可变长编码,然后根据标准的 Huffman 码表进行熵编码,输出压缩图像的比特序列,实现了图像的压缩。
DCT 变换的特点是变换后图像大部分能量集中在左上角,因为左上角反应原图像低频部分数据,右下角反应原图像高频部分数据,而图像的能量通常集中在低频部分。因此 DCT 变换后,只保留 DCT 系数矩阵最左上角的 10 个系数,然后对每个图像块利用这 10个系数进行 DCT 反变换来重构图像。
其基于 DCT 变换矩阵算法的处理过程如下图:
⛄二、部分源代码
function JPEGEncodeDecode
%UNTITLED7 Summary of this function goes here
% Detailed explanation goes here
img=imread(‘1.jpg’);
subplot(121);imshow(img);title(‘原图’); %显示原图
img_ycbcr = rgb2ycbcr(img); % rgb->yuv
[row,col,~]=size(img_ycbcr); % 取出行列数,~表示3个通道算1列
%对图像进行扩展
row_expand=ceil(row/16)*16; %行数上取整再乘16,及扩展成16的倍数
if mod(row,16)~=0 %行数不是16的倍数,用最后一行进行扩展
for i=row:row_expand
img_ycbcr(i,:,:)=img_ycbcr(row,:😅;
end
end
col_expand=ceil(col/16)*16; %列数上取整
if mod(col,16)~=0 %列数不是16的倍数,用最后一列进行扩展
for j=col:col_expand
img_ycbcr(:,j,:)=img_ycbcr(:,col,:);
end
end
%对Y,Cb,Cr分量进行4:2:0采样
Y=img_ycbcr(:,:,1); %Y分量
Cb=zeros(row_expand/2,col_expand/2);
Cr=zeros(row_expand/2,col_expand/2); %Cr分量
for i=1:row_expand/2
for j=1:2:col_expand/2-1 %奇数列
Cb(i,j)=double(img_ycbcr(i2-1,j2-1,2));
Cr(i,j)=double(img_ycbcr(i2-1,j2+1,3));
end
end
for i=1:row_expand/2
for j=2:2:col_expand/2 %偶数列
Cb(i,j)=double(img_ycbcr(i2-1,j2-2,2));
Cr(i,j)=double(img_ycbcr(i2-1,j2,3));
end
end
%分别对三种颜色分量进行编码
Y_Table=[16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99];%亮度量化表
CbCr_Table=[17, 18, 24, 47, 99, 99, 99, 99;
18, 21, 26, 66, 99, 99, 99, 99;
24, 26, 56, 99, 99, 99, 99, 99;
47, 66, 99 ,99, 99, 99, 99, 99;
99, 99, 99, 99, 99, 99, 99, 99;
99, 99, 99, 99, 99, 99, 99, 99;
99, 99, 99, 99, 99, 99, 99, 99;
99, 99, 99, 99, 99, 99, 99, 99];%色差量化表
Qua_Factor=0.5;%量化因子,最小为0.01,最大为255,建议在0.5和3之间,越小质量越好文件越大
%对三个通道分别DCT和量化
Y_dct_q=Dct_Quantize(Y,Qua_Factor,Y_Table);
Cb_dct_q=Dct_Quantize(Cb,Qua_Factor,CbCr_Table);
Cr_dct_q=Dct_Quantize(Cr,Qua_Factor,CbCr_Table);
%对三个通道分别反量化和反DCT
Y_in_q_dct=Inverse_Quantize_Dct(Y_dct_q,Qua_Factor,Y_Table);
Cb_in_q_dct=Inverse_Quantize_Dct(Cb_dct_q,Qua_Factor,CbCr_Table);
Cr_in_q_dct=Inverse_Quantize_Dct(Cr_dct_q,Qua_Factor,CbCr_Table);
%恢复出YCBCR图像
YCbCr_in(:,:,1)=Y_in_q_dct;
for i=1:row_expand/2
for j=1:col_expand/2
YCbCr_in(2i-1,2j-1,2)=Cb_in_q_dct(i,j);
YCbCr_in(2i-1,2j,2)=Cb_in_q_dct(i,j);
YCbCr_in(2i,2j-1,2)=Cb_in_q_dct(i,j);
YCbCr_in(2i,2j,2)=Cb_in_q_dct(i,j);
YCbCr_in(2*i-1,2*j-1,3)=Cr_in_q_dct(i,j);YCbCr_in(2*i-1,2*j,3)=Cr_in_q_dct(i,j);YCbCr_in(2*i,2*j-1,3)=Cr_in_q_dct(i,j);YCbCr_in(2*i,2*j,3)=Cr_in_q_dct(i,j);
end
end
function [ Matrix ] = Inverse_Quantize_Dct( I,Qua_Factor,Qua_Table )
%UNTITLED3 Summary of this function goes here
% Detailed explanation goes here
Qua_Matrix=Qua_Factor.*Qua_Table; %反量化矩阵
I=blkproc(I,[8 8],‘x.*P1’,Qua_Matrix);%反量化,四舍五入
[row,column]=size(I);
I=blkproc(I,[8 8],‘idct2(x)’);
I=uint8(I+128);
for i=1:row
for j=1:column
if I(i,j)>255
I(i,j)=255;
elseif I(i,j)<0
I(i,j)=0;
end
end
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]程芳.基于DCT变换的JPEG图像压缩方式的应用研究[J].电脑知识与技术. 2021,17(10)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
这篇关于【图像压缩】基于matlab JEPG图像压缩【含Matlab源码 1167期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!