本文主要是介绍E - Okabe and El Psy Kongroo CodeForces - 821E,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Okabe likes to take walks but knows that spies from the Organization could be anywhere; that’s why he wants to know how many different walks he can take in his city safely. Okabe’s city can be represented as all points (x, y) such that x and y are non-negative. Okabe starts at the origin (point (0, 0)), and needs to reach the point (k, 0). If Okabe is currently at the point (x, y), in one step he can go to (x + 1, y + 1), (x + 1, y), or (x + 1, y - 1).
Additionally, there are n horizontal line segments, the i-th of which goes from x = ai to x = bi inclusive, and is at y = ci. It is guaranteed that a1 = 0, an ≤ k ≤ bn, and ai = bi - 1 for 2 ≤ i ≤ n. The i-th line segment forces Okabe to walk with y-value in the range 0 ≤ y ≤ ci when his x value satisfies ai ≤ x ≤ bi, or else he might be spied on. This also means he is required to be under two line segments when one segment ends and another begins.
Okabe now wants to know how many walks there are from the origin to the point (k, 0) satisfying these conditions, modulo 109 + 7.
Input
The first line of input contains the integers n and k (1 ≤ n ≤ 100, 1 ≤ k ≤ 1018) — the number of segments and the destination x coordinate.
The next n lines contain three space-separated integers ai, bi, and ci (0 ≤ ai < bi ≤ 1018, 0 ≤ ci ≤ 15) — the left and right ends of a segment, and its y coordinate.
It is guaranteed that a1 = 0, an ≤ k ≤ bn, and ai = bi - 1 for 2 ≤ i ≤ n.
Output
Print the number of walks satisfying the conditions, modulo 1000000007 (109 + 7).
Example
Input
1 3
0 3 3
Output
4
Input
2 6
0 3 0
3 10 2
Output
4
Note
The graph above corresponds to sample 1. The possible walks are:
The graph above corresponds to sample 2. There is only one walk for Okabe to reach (3, 0). After this, the possible walks are:
裸的矩阵快速幂的题目,练了一练,快速幂用倍增写,不然容易萎。
using namespace std;
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define ll long longstruct matrix{ll it[21][21];
}mu;
const ll mod=1e9+7;
ll n,k;
ll a[201],b[201],c[201];
ll ans[21];
ll bef[21];
matrix st[65];
void prll(matrix xx)
{for(ll i=0;i<=20;i++){for(ll j=0;j<=20;j++){cout<<xx.it[i][j]<<" ";}puts("");}
}
matrix operator * (matrix a,matrix b)
{matrix c;for(ll i=0;i<=20;i++){for(ll j=0;j<=20;j++){c.it[i][j]=0;for(ll k=0;k<=20;k++){c.it[i][j]=(c.it[i][j]+a.it[i][k]*b.it[k][j])%mod;}}}return c;
}
matrix pow(ll x)
{matrix hh;bool flag=0;st[1]=mu;ll cnt=0;for(ll i=2;i<=64;i++)st[i]=st[i-1]*st[i-1];while(x){cnt++;if(x%2){if(!flag) hh=st[cnt];else hh=hh*st[cnt];flag=1;}x>>=1;}return hh;
}
ll tot;
int main()
{cin>>n>>k;ans[0]=1;for(ll i=1;i<=n;i++){cin>>a[i]>>b[i]>>c[i];if(b[i]>=k){b[i]=k;tot=i;break;}}n=tot;for(ll i=1;i<=n;i++){memset(mu.it,0,sizeof(mu.it));for(ll j=0;j<=c[i];j++){if(j==0){mu.it[j][0]=mu.it[j][1]=1;}elseif(j==c[i]){mu.it[j][c[i]]=mu.it[j][c[i]-1]=1;}elsemu.it[j][j-1]=mu.it[j][j]=mu.it[j][j+1]=1;}matrix hh=pow(b[i]-a[i]);for(ll j=0;j<=20;j++){bef[j]=0;for(ll k=0;k<=20;k++){ bef[j]=(bef[j]+ans[k]*hh.it[k][j])%mod;}}for(ll j=0;j<=20;j++) ans[j]=bef[j];for(ll j=c[i]+1;j<=20;j++) ans[j]=0;}cout<<ans[0]<<endl;
}
这篇关于E - Okabe and El Psy Kongroo CodeForces - 821E的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!