python之常用builtins

2024-04-10 03:38
文章标签 python 常用 builtins

本文主要是介绍python之常用builtins,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分为class和function

1. class
1.1 class range

help(__builtins__.range)
class range(object)
 |  range(stop) -> range object
 |  range(start, stop[, step]) -> range object
 |  Return a sequence of numbers from start to stop by step.
平时我们在for循环中经常用到range,其实这里的range是类而非function
python3.x中range取代了xrange,从原来的内置函数变成了类

for num in range(4):print(num, end = ' ')
output:

0 1 2 3 
1.2 class filter
class filter(object)
 |  filter(function or None, iterable) --> filter object
 |  Return an iterator yielding those items of iterable for which function(item)
 |  is true. If function is None, return the items that are true.
values = ['1', '2', '-3', '-', '4', 'N/A', '5']
def is_int(val):try:if int(val):return Trueexcept ValueError:return False
ivals = list(filter(is_int, values))
print(ivals)
output:

['1', '2', '-3', '4', '5']

1.3 class enumerate
class enumerate(object)
 |  enumerate(iterable[, start]) -> iterator for index, value of iterable
 |  
 |  Return an enumerate object.  iterable must be another object that supports
 |  iteration.  The enumerate object yields pairs containing a count (from
 |  start, which defaults to zero) and a value yielded by the iterable argument.
 |  enumerate is useful for obtaining an indexed list:
 |      (0, seq[0]), (1, seq[1]), (2, seq[2]), ...

S = 'abcdefghijk'
for (index,char) in enumerate(S):print(str(index).center(2), end = ' ')print(char)
output:

0  a
1  b
2  c
3  d
4  e
5  f
6  g
7  h
8  i
9  j
10 k
1.4 class zip(object)
 |  zip(iter1 [,iter2 [...]]) --> zip object
 |  
 |  Return a zip object whose .__next__() method returns a tuple where
 |  the i-th element comes from the i-th iterable argument.  The .__next__()
 |  method continues until the shortest iterable in the argument sequence
 |  is exhausted and then it raises StopIteration.
1.4.1
一般应用

#列表以及迭代器的压缩和解压缩
ta = [1,2,3]
tb = [9,8,7]
tc = ['a','b','c']
for (a,b,c) in zip(ta,tb,tc):print(a,b,c)# cluster
# zipped is a generator
zipped = zip(ta,tb)
print(zipped)
print(type(zipped))# decompose
na, nb = zip(*zipped)
print(na, nb)
output:

1 9 a
2 8 b
3 7 c
<zip object at 0x00000000023CDEC8>
<class 'zip'>
(1, 2, 3) (9, 8, 7)
1.4.2
列表相邻元素压缩器

zip(*[iter(s)]*n)应用
How does zip(*[iter(s)]*n) work in Python? 
解释1:
iter() is an iterator over a sequence. [x] * n produces a list containing n quantity of x, i.e. a list of length n, 
where each element is x. *arg unpacks a sequence into arguments for a function call. 
Therefore you're passing the same iterator 3 times to zip(), and it pulls an item from the iterator each time.
解释2:
iter(s) returns an iterator for s.
[iter(s)]*n makes a list of n times the same iterator for s.
So, when doing zip(*[iter(s)]*n), it extracts an item from all the three iterators from the list in order. 
Since all the iterators are the same object, it just groups the list in chunks of n.

example1:

s = [1,2,3,4,5,6,7,8,9]
n = 3zz = zip(*[iter(s)]*n) # returns [(1,2,3),(4,5,6),(7,8,9)]
for i in zz:print(i)
output:

(1, 2, 3)
(4, 5, 6)
(7, 8, 9)
example2:

x = iter([1,2,3,4,5,6,7,8,9])
for i in zip(x, x, x):print(i)
output:

(1, 2, 3)
(4, 5, 6)
(7, 8, 9)
1.4.3
针对上面的扩展

One word of advice for using zip like 1.4.2. It will truncate your list if it's length is not evenly divisible.
you could use something like this:
def n_split(iterable, n):num_extra = len(iterable) % nzipped = zip(*[iter(iterable)] * n)return list(zipped) if not num_extra else list(zipped) + n_split(iterable[-num_extra:],num_extra)for ints in n_split(range(1,12), 3):print(', '.join([str(i) for i in ints]))
output:

1, 2, 3
4, 5, 6
7, 8, 9
10, 11
注:
a.帖子上对n_split函数的return是return zipped if not num_extra else zipped + [iterable[-num_extra:], ],
但是这样会报错 TypeError: unsupported operand type(s) for +: 'zip' and 'list',所以最终修改成以上形式。
b.print(', '.join([str(i) for i in ints])) 中i必须是str形式,不然会报错
1.4.4 针对二维矩阵的行列互换
a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
b = map(list,zip(*a))
for i in b:print(i)
output:

[1, 4, 7]
[2, 5, 8]
[3, 6, 9]
1.4.5 反转字典
m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
print(dict(zip(m.values(), m.keys())))
output:

{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
1.5 class map
class map(object)
 |  map(func, *iterables) --> map object
 |  
 |  Make an iterator that computes the function using arguments from
 |  each of the iterables.  Stops when the shortest iterable is exhausted.
re = map((lambda x,y: x+y),[1,2,3],[6,7,9])
for i in re:print(i)
output:

7
9
12
1.6 class slice
class slice(object)
 |  slice(stop)
 |  slice(start, stop[, step])
 |  
 |  Create a slice object.  This is used for extended slicing (e.g. a[0:10:2]).
 |  
 |  Methods defined here:
 |  indices(...)
 |      S.indices(len) -> (start, stop, stride)
 |      
 |      Assuming a sequence of length len, calculate the start and stop
 |      indices, and the stride length of the extended slice described by
 |      S. Out of bounds indices are clipped in a manner consistent with the
 |      handling of normal slices.
 |  Data descriptors defined here:
 |  start
 |  step
 |  stop
#命名列表切割方式
a = [0, 1, 2, 3, 4, 5]
ind = slice(-3, None)
print(a[ind]) 
for i in ind.indices(6):print(i)  
print(a[3:6:1])
#由上脚本可知indices其实就是对slice的一种解释,其实把slice(-3, None)变成slice(3,6,1)结果也是一样的
output:

[3, 4, 5]
3
6
1
[3, 4, 5]

2. built-in functions:
2.1 built-in function iter 

iter(...)
    iter(iterable) -> iterator
    iter(callable, sentinel) -> iterator
    
    Get an iterator from an object.  In the first form, the argument must
    supply its own iterator, or be a sequence.
    In the second form, the callable is called until it returns the sentinel.
for i in iter(range(5)):print(i, end = ' ')
output:

0 1 2 3 4
2.2 built-in function min
min(...)
    min(iterable, *[, default=obj, key=func]) -> value
    min(arg1, arg2, *args, *[, key=func]) -> value
    
    With a single iterable argument, return its smallest item. The
    default keyword-only argument specifies an object to return if
    the provided iterable is empty.
    With two or more arguments, return the smallest argument.
# for the tow methods, we give the examples, as follows:
# Data reduction across fields of a data structure
portfolio = [{'name':'GOOG', 'shares': 50},{'name':'YHOO', 'shares': 75},{'name':'AOL', 'shares': 20},{'name':'SCOX', 'shares': 65}
]
print(min(p['shares'] for p in portfolio))
print(min(portfolio, key = lambda x: x['shares']))
output:

20
{'name': 'AOL', 'shares': 20}
2.3 Help on built-in function eval
eval(...)
    eval(source[, globals[, locals]]) -> value
    
    Evaluate the source in the context of globals and locals.
    The source may be a string representing a Python expression
    or a code object as returned by compile().
    The globals must be a dictionary and locals can be any mapping,
    defaulting to the current globals and locals.
    If only globals is given, locals defaults to it.
eval()函数十分强大,官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。so,结合math当成一个计算器很好用。
其他用法,可以把list,tuple,dict和string相互转化。见下例子:
>>> a = "[[1,2], [3,4], [5,6], [7,8], [9,0]]"
>>> print(type(eval(a)))
<class 'list'>
另一个例子:

# Compute area with console input
import math
# Prompt the user to enter a radius
radius = eval(input("Enter a value for radius:"))
# compute area
area = pow(radius, 2) * math.pi
# Display results
print("The area for the circle of radius", radius, "is", area)


这篇关于python之常用builtins的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/889982

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

JS常用组件收集

收集了一些平时遇到的前端比较优秀的组件,方便以后开发的时候查找!!! 函数工具: Lodash 页面固定: stickUp、jQuery.Pin 轮播: unslider、swiper 开关: switch 复选框: icheck 气泡: grumble 隐藏元素: Headroom

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

常用的jdk下载地址

jdk下载地址 安装方式可以看之前的博客: mac安装jdk oracle 版本:https://www.oracle.com/java/technologies/downloads/ Eclipse Temurin版本:https://adoptium.net/zh-CN/temurin/releases/ 阿里版本: github:https://github.com/

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

30常用 Maven 命令

Maven 是一个强大的项目管理和构建工具,它广泛用于 Java 项目的依赖管理、构建流程和插件集成。Maven 的命令行工具提供了大量的命令来帮助开发人员管理项目的生命周期、依赖和插件。以下是 常用 Maven 命令的使用场景及其详细解释。 1. mvn clean 使用场景:清理项目的生成目录,通常用于删除项目中自动生成的文件(如 target/ 目录)。共性规律:清理操作

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该