restapi(8)- restapi-sql:用户自主的服务

2024-04-09 04:38

本文主要是介绍restapi(8)- restapi-sql:用户自主的服务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  学习函数式编程初衷是看到自己熟悉的oop编程语言和sql数据库在现代商业社会中前景暗淡,准备完全放弃windows技术栈转到分布式大数据技术领域的,但是在现实中理想总是不如人意的。本来想在一个规模较小的公司展展拳脚,以为小公司会少点历史包袱,有利于全面技术改造。但现实是:即使是小公司,一旦有个成熟的产品,那么进行全面的技术更新基本上是不可能的了,因为公司要生存,开发人员很难新旧技术之间随时切换。除非有狂热的热情,员工怠慢甚至抵制情绪不容易解决。只能采取逐步切换方式:保留原有产品的后期维护不动,新产品开发用一些新的技术。在我们这里的情况就是:以前一堆c#、sqlserver的东西必须保留,新的功能比如大数据、ai、识别等必须用新的手段如scala、python、dart、akka、kafka、cassandra、mongodb来开发。好了,新旧两个开发平台之间的软件系统对接又变成了一个问题。

   现在我们这里又个需求:把在linux-ubuntu akka-cluster集群环境里mongodb里数据处理的结果传给windows server下SQLServer里。这是一种典型的异系统集成场景。我的解决方案是通过一个restapi服务作为两个系统的数据桥梁,这个restapi的最基本要求是:

1、支持任何操作系统前端:这个没什么问题,在http层上通过json交换数据

2、能读写mongodb:在前面讨论的restapi-mongo已经实现了这一功能

3、能读写windows server环境下的sqlserver:这个是本篇讨论的主题

前面曾经实现了一个jdbc-engine项目,基于scalikejdbc,不过只示范了slick-h2相关的功能。现在需要sqlserver-jdbc驱动,然后试试能不能在JVM里驱动windows下的sqlserver。maven里找不到sqlserver的驱动,但从微软官网可以下载mssql-jdbc-7.0.0.jre8.jar。这是个jar,在sbt里称作unmanagedjar,不能摆在build.sbt的dependency里。这个需要摆在项目根目录下的lib目录下即可(也可以在放在build.sbt里unmanagedBase :=?? 指定的路径下)。然后是数据库连接,下面是可以使用sqlserver的application.conf配置文件内容:

# JDBC settings
prod {db {h2 {driver = "org.h2.Driver"url = "jdbc:h2:tcp://localhost/~/slickdemo"user = ""password = ""poolFactoryName = "hikaricp"numThreads = 10maxConnections = 12minConnections = 4keepAliveConnection = true}mysql {driver = "com.mysql.cj.jdbc.Driver"url = "jdbc:mysql://localhost:3306/testdb"user = "root"password = "123"poolFactoryName = "hikaricp"numThreads = 10maxConnections = 12minConnections = 4keepAliveConnection = true}postgres {driver = "org.postgresql.Driver"url = "jdbc:postgresql://localhost:5432/testdb"user = "root"password = "123"poolFactoryName = "hikaricp"numThreads = 10maxConnections = 12minConnections = 4keepAliveConnection = true}mssql {driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"url = "jdbc:sqlserver://192.168.11.164:1433;integratedSecurity=false;Connect Timeout=3000"user = "sa"password = "Tiger2020"poolFactoryName = "hikaricp"numThreads = 10maxConnections = 12minConnections = 4keepAliveConnection = trueconnectionTimeout = 3000}termtxns {driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"url = "jdbc:sqlserver://192.168.11.164:1433;DATABASE=TERMTXNS;integratedSecurity=false;Connect Timeout=3000"user = "sa"password = "Tiger2020"poolFactoryName = "hikaricp"numThreads = 10maxConnections = 12minConnections = 4keepAliveConnection = trueconnectionTimeout = 3000}crmdb {driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"url = "jdbc:sqlserver://192.168.11.164:1433;DATABASE=CRMDB;integratedSecurity=false;Connect Timeout=3000"user = "sa"password = "Tiger2020"poolFactoryName = "hikaricp"numThreads = 10maxConnections = 12minConnections = 4keepAliveConnection = trueconnectionTimeout = 3000}}# scallikejdbc Global settingsscalikejdbc.global.loggingSQLAndTime.enabled = truescalikejdbc.global.loggingSQLAndTime.logLevel = infoscalikejdbc.global.loggingSQLAndTime.warningEnabled = truescalikejdbc.global.loggingSQLAndTime.warningThresholdMillis = 1000scalikejdbc.global.loggingSQLAndTime.warningLogLevel = warnscalikejdbc.global.loggingSQLAndTime.singleLineMode = falsescalikejdbc.global.loggingSQLAndTime.printUnprocessedStackTrace = falsescalikejdbc.global.loggingSQLAndTime.stackTraceDepth = 10
}

这个文件里的mssql,termtxns,crmdb段落都是给sqlserver的,它们都使用hikaricp线程池管理。

在jdbc-engine里启动数据库方式如下:

  ConfigDBsWithEnv("prod").setup('termtxns)ConfigDBsWithEnv("prod").setup('crmdb)ConfigDBsWithEnv("prod").loadGlobalSettings()

这段打开了在配置文件中用termtxns,crmdb注明的数据库。

下面是SqlHttpServer.scala的代码:

package com.datatech.rest.sql
import akka.http.scaladsl.Http
import akka.http.scaladsl.server.Directives._
import pdi.jwt._
import AuthBase._
import MockUserAuthService._
import com.datatech.sdp.jdbc.config.ConfigDBsWithEnvimport akka.actor.ActorSystem
import akka.stream.ActorMaterializerimport Repo._
import SqlRoute._object SqlHttpServer extends App {implicit val httpSys = ActorSystem("sql-http-sys")implicit val httpMat = ActorMaterializer()implicit val httpEC = httpSys.dispatcherConfigDBsWithEnv("prod").setup('termtxns)ConfigDBsWithEnv("prod").setup('crmdb)ConfigDBsWithEnv("prod").loadGlobalSettings()implicit val authenticator = new AuthBase().withAlgorithm(JwtAlgorithm.HS256).withSecretKey("OpenSesame").withUserFunc(getValidUser)val route =path("auth") {authenticateBasic(realm = "auth", authenticator.getUserInfo) { userinfo =>post { complete(authenticator.issueJwt(userinfo))}}} ~pathPrefix("api") {authenticateOAuth2(realm = "api", authenticator.authenticateToken) { token =>new SqlRoute("sql", token)(new JDBCRepo).route// ~ ...}}val (port, host) = (50081,"192.168.11.189")val bindingFuture = Http().bindAndHandle(route,host,port)println(s"Server running at $host $port. Press any key to exit ...")scala.io.StdIn.readLine()bindingFuture.flatMap(_.unbind()).onComplete(_ => httpSys.terminate())}

服务入口在http://mydemo.com/api/sql,服务包括get,post,put三类,看看这个SqlRoute:

package com.datatech.rest.sql
import akka.http.scaladsl.server.Directives
import akka.stream.ActorMaterializer
import akka.http.scaladsl.model._
import akka.actor.ActorSystem
import com.datatech.rest.sql.Repo.JDBCRepo
import akka.http.scaladsl.common._
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupporttrait JsFormats extends SprayJsonSupport with DefaultJsonProtocol
object JsConverters extends JsFormats {import SqlModels._implicit val brandFormat = jsonFormat2(Brand)implicit val customerFormat = jsonFormat6(Customer)
}object SqlRoute {import JsConverters._implicit val jsonStreamingSupport = EntityStreamingSupport.json().withParallelMarshalling(parallelism = 8, unordered = false)class SqlRoute(val pathName: String, val jwt: String)(repo: JDBCRepo)(implicit  sys: ActorSystem, mat: ActorMaterializer) extends Directives with JsonConverter {val route = pathPrefix(pathName) {path(Segment / Remaining) { case (db, tbl) =>(get & parameter('sqltext)) { sql => {val rsc = new RSConverterval rows = repo.query[Map[String,Any]](db, sql, rsc.resultSet2Map)complete(rows.map(m => toJson(m)))}} ~ (post & parameter('sqltext)) { sql =>entity(as[String]){ json =>repo.batchInsert(db,tbl,sql,json)complete(StatusCodes.OK)}} ~ put {entity(as[Seq[String]]) { sqls =>repo.update(db, sqls)complete(StatusCodes.OK)}}}}}
}

jdbc-engine的特点是可以用字符类型的sql语句来操作。所以我们可以通过传递字符串型的sql语句来实现服务调用,很通用。restapi-sql提供的是对服务器端sqlserver的普通操作,包括读get,写入post,更改put。这些sqlserver操作部分是在JDBCRepo里的:

package com.datatech.rest.sql
import com.datatech.sdp.jdbc.engine.JDBCEngine._
import com.datatech.sdp.jdbc.engine.{JDBCQueryContext, JDBCUpdateContext}
import scalikejdbc._
import akka.stream.ActorMaterializer
import com.datatech.sdp.result.DBOResult.DBOResult
import akka.stream.scaladsl._
import scala.concurrent._
import SqlModels._object Repo {class JDBCRepo(implicit ec: ExecutionContextExecutor, mat: ActorMaterializer) {def query[R](db: String, sqlText: String, toRow: WrappedResultSet => R): Source[R,Any] = {//construct the contextval ctx = JDBCQueryContext(dbName = Symbol(db),statement = sqlText)jdbcAkkaStream(ctx,toRow)}def query(db: String, tbl: String, sqlText: String) = {//construct the contextval ctx = JDBCQueryContext(dbName = Symbol(db),statement = sqlText)jdbcQueryResult[Vector,RS](ctx,getConverter(tbl)).toFuture[Vector[RS]]}def update(db: String, sqlTexts: Seq[String]): DBOResult[Seq[Long]] = {val ctx = JDBCUpdateContext(dbName = Symbol(db),statements = sqlTexts)jdbcTxUpdates(ctx)}def bulkInsert[P](db: String, sqlText: String, prepParams: P => Seq[Any], params: Source[P,_]) = {val insertAction = JDBCActionStream(dbName = Symbol(db),parallelism = 4,processInOrder = false,statement = sqlText,prepareParams = prepParams)params.via(insertAction.performOnRow).to(Sink.ignore).run()}def batchInsert(db: String, tbl: String, sqlText: String, jsonParams: String):DBOResult[Seq[Long]] = {val ctx = JDBCUpdateContext(dbName = Symbol(db),statements = Seq(sqlText),batch = true,parameters = getSeqParams(jsonParams,sqlText))jdbcBatchUpdate[Seq](ctx)}}import monix.execution.Scheduler.Implicits.globalimplicit class DBResultToFuture(dbr: DBOResult[_]){def toFuture[R] = {dbr.value.value.runToFuture.map {eor =>eor match {case Right(or) => or match {case Some(r) => r.asInstanceOf[R]case None => throw new RuntimeException("Operation produced None result!")}case Left(err) => throw new RuntimeException(err)}}}}
}

读query部分即 def query[R](db: String, sqlText: String, toRow: WrappedResultSet => R): Source[R,Any] = {...} 这个函数返回Source[R,Any],下面我们好好谈谈这个R:R是读的结果,通常是某个类或model,比如读取Person记录返回一组Person类的实例。这里有一种强类型的感觉。一开始我也是随大流坚持建model后用toJson[E],fromJson[E]这样做线上数据转换。现在的问题是restapi-sql是一项公共服务,使用者知道sqlserver上有些什么表,然后希望通过sql语句来从这些表里读取数据。这些sql语句可能超出表的界限如sql join, union等,如果我们坚持每个返回结果都必须有个对应的model,那么显然就会牺牲这个服务的通用性。实际上,http线上数据交换本身就不可能是强类型的,因为经过了json转换。对于json转换来说,只要求字段名称、字段类型对称就行了。至于从什么类型转换成了另一个什么类型都没问题。所以,字段名+字段值的表现形式不就是Map[K,V]吗,我们就用Map[K,V]作为万能model就行了,没人知道。也就是说我们可以把jdbc的ResultSet转成Map[K,V]然后再转成json,接收方可以获取与model同样的字段名和字段值。好,就把ResultSet转成Map[String,Any]:

package com.datatech.rest.sql
import scalikejdbc._
import java.sql.ResultSetMetaData
class RSConverter {import RSConverterUtil._var rsMeta: ResultSetMetaData = _var columnCount: Int = 0var rsFields: List[(String,String)] = List[(String,String)]()def getFieldsInfo:List[(String,String)] =( 1 until columnCount).foldLeft(List[(String,String)]()) {case (cons,i) =>(rsMeta.getColumnName(i) -> rsMeta.getColumnTypeName(i)) :: cons}def resultSet2Map(rs: WrappedResultSet): Map[String,Any] = {if(columnCount == 0) {rsMeta =  rs.underlying.getMetaDatacolumnCount = rsMeta.getColumnCountrsFields = getFieldsInfo}rsFields.foldLeft(Map[String,Any]()) {case (m,(n,t)) =>m + (n -> rsFieldValue(n,t,rs))}}
}
object RSConverterUtil {import scala.collection.immutable.TreeMapdef map2Params(stm: String, m: Map[String,Any]): Seq[Any] = {val sortedParams = m.foldLeft(TreeMap[Int,Any]()) {case (t,(k,v)) => t + (stm.indexOfSlice(k) -> v)}sortedParams.map(_._2).toSeq}def rsFieldValue(fldname: String, fldType: String, rs: WrappedResultSet): Any = fldType match {case "LONGVARCHAR" => rs.string(fldname)case "VARCHAR" => rs.string(fldname)case "CHAR" => rs.string(fldname)case "BIT" => rs.boolean(fldname)case "TIME" => rs.time(fldname)case "TIMESTAMP" => rs.timestamp(fldname)case "ARRAY" => rs.array(fldname)case "NUMERIC" => rs.bigDecimal(fldname)case "BLOB" => rs.blob(fldname)case "TINYINT" => rs.byte(fldname)case "VARBINARY" => rs.bytes(fldname)case "BINARY" => rs.bytes(fldname)case "CLOB" => rs.clob(fldname)case "DATE" => rs.date(fldname)case "DOUBLE" => rs.double(fldname)case "REAL" => rs.float(fldname)case "FLOAT" => rs.float(fldname)case "INTEGER" => rs.int(fldname)case "SMALLINT" => rs.int(fldname)case "Option[Int]" => rs.intOpt(fldname)case "BIGINT" => rs.long(fldname)}
}

下面是个调用query服务的例子:

    val getAllRequest = HttpRequest(HttpMethods.GET,uri = "http://192.168.11.189:50081/api/sql/termtxns/brand?sqltext=SELECT%20*%20FROM%20BRAND",).addHeader(authentication)(for {response <- Http().singleRequest(getAllRequest)message <- Unmarshal(response.entity).to[String]} yield message).andThen {case Success(msg) => println(s"Received message: $msg")case Failure(err) => println(s"Error: ${err.getMessage}")}

特点是我只需要提供sql语句,服务就会返回一个json数组,然后我怎么转换json就随我高兴了。

这篇关于restapi(8)- restapi-sql:用户自主的服务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/887194

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

MySQL数据库中ENUM的用法是什么详解

《MySQL数据库中ENUM的用法是什么详解》ENUM是一个字符串对象,用于指定一组预定义的值,并可在创建表时使用,下面:本文主要介绍MySQL数据库中ENUM的用法是什么的相关资料,文中通过代码... 目录mysql 中 ENUM 的用法一、ENUM 的定义与语法二、ENUM 的特点三、ENUM 的用法1

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

Linux中SSH服务配置的全面指南

《Linux中SSH服务配置的全面指南》作为网络安全工程师,SSH(SecureShell)服务的安全配置是我们日常工作中不可忽视的重要环节,本文将从基础配置到高级安全加固,全面解析SSH服务的各项参... 目录概述基础配置详解端口与监听设置主机密钥配置认证机制强化禁用密码认证禁止root直接登录实现双因素

mysql中的服务器架构详解

《mysql中的服务器架构详解》:本文主要介绍mysql中的服务器架构,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、mysql服务器架构解释3、总结1、背景简单理解一下mysqphpl的服务器架构。2、mysjsql服务器架构解释mysql的架