restapi(2)- generic restful CRUD:通用的restful风格数据库表维护工具

2024-04-09 04:38

本文主要是介绍restapi(2)- generic restful CRUD:通用的restful风格数据库表维护工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

   研究关于restapi的初衷是想搞一套通用的平台数据表维护http工具。前面谈过身份验证和使用权限、文件的上传下载,这次来到具体的数据库表维护。我们在这篇示范里设计一套通用的对平台每一个数据表的标准维护方式。http服务端数据表维护CRUD有几个标准的部分组成:Model,Repository,Route。我们先看看这几个类型的基类:

trait ModelBase[M,E] {def to: M => Edef from: E => M
}trait RepoBase[M] {def getById(id: Long) : Future[Option[M]]def getAll : Future[Seq[M]]def filter(expr: M => Boolean): Future[Seq[M]]def save(row: M) : Future[AnyRef]def deleteById(id: Long) : Future[Int]def updateById(id: Long, row: M) : Future[Int]
}abstract class RouteBase[M](val pathName: String, repository: RepoBase[M])(implicit m: Manifest[M]) extends Directives with JsonConverter {val route = path(pathName) {get {complete(futureToJson(repository.getAll))} ~ post {entity(as[String]) { json =>val extractedEntity = fromJson[M](json)complete(futureToJson(repository.save(extractedEntity)))}}} ~ path(pathName / LongNumber) { id =>get {complete(futureToJson(repository.getById(id)))} ~ put {entity(as[String]) { json =>val extractedEntity = fromJson[M](json)complete(futureToJsonAny(repository.updateById(id, extractedEntity)))}} ~ delete {complete(futureToJsonAny(repository.deleteById(id)))}}
}

很明显,Model是数据库表行类型的表达方式、Repository是数据库表操作方法、Route是操作方法的调用。下面是这几个类型的实例示范:

object MockModels {case class DataRow (name: String,age: Int)case class Person(name: String, age: Int)extends ModelBase[Person,DataRow] {def to: Person => DataRow = p => DataRow (name = p.name,age = p.age)def from: DataRow => Person = m => Person(name = m.name,age = m.age)}
}package com.datatech.restapi
import MockModels._import scala.concurrent.Future
object MockRepo {class PersonRepo extends RepoBase[Person] {override def getById(id: Long): Future[Option[Person]] = Future.successful(Some(Person("johnny lee",23)))override def getAll: Future[Seq[Person]] = Future.successful(Seq(Person("jonny lee",23),Person("candy wang",45),Person("jimmy kowk",34)))override def filter(expr: Person => Boolean): Future[Seq[Person]] = Future.successful(Seq(Person("jonny lee",23),Person("candy wang",45),Person("jimmy kowk",34)))override def save(row: Person): Future[Person] = Future.successful(row)override def deleteById(id: Long): Future[Int] = Future.successful(1)override def updateById(id: Long, row: Person): Future[Int] = Future.successful(1)}}object PersonRoute {class PersonRoute(pathName: String, repo: RepoBase[Person])extends RouteBase[Person](pathName,repo)val route = new PersonRoute("person",new PersonRepo).route
}

Model代表数据表结构以及某种数据库的表行与Model之间的转换。而repository则代表某种数据库对库表具体操作的实现。我们把焦点拉回到RouteBase上来,这里包含了rest标准的get,post,put,delete http操作。实际上就是request/response处理机制。因为数据需要在线上on-the-wire来回移动,所以需要进行数据转换。通用的数据传输模式是:类->json->类,即序列化/反序列化。akka-http提供了丰富的Marshaller来实现自动的数据转换,但在编译时要提供Marshaller的隐式实例implicit instance,所以用类参数是无法通过编译的。只能手工进行类和json之间的转换。json转换是通过json4s实现的:

import java.text.SimpleDateFormat
import akka.http.scaladsl.model._
import org.json4s.JsonAST.{JNull, JString}
import org.json4s.{CustomSerializer, DefaultFormats, Formats}
import org.json4s.jackson.Serializationimport scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.Futuretrait DateSerializer {case object SqlDateSerializer extends CustomSerializer[java.sql.Date](format => ( {case JString(date) => {val utilDate = new SimpleDateFormat("yyyy-MM-dd").parse(date);new java.sql.Date(utilDate.getTime)}case JNull         => null}, {case date: java.sql.Date => JString(date.toString)}))}trait JsonConverter extends DateSerializer {implicit val formats: Formats = new DefaultFormats {override def dateFormatter = new SimpleDateFormat("yyyy-MM-dd")} ++ List(SqlDateSerializer)def toJson(obj: AnyRef): String = {Serialization.write(obj)}def futureToJson(obj: Future[AnyRef]): Future[HttpResponse] = {obj.map { x =>HttpResponse(status = StatusCodes.OK, entity = HttpEntity(MediaTypes.`application/json`, Serialization.write(x)))}.recover {case ex => ex.printStackTrace(); HttpResponse(status = StatusCodes.InternalServerError)}}def futureToJsonAny(obj: Future[Any]): Future[HttpResponse] = {obj.map { x =>HttpResponse(status = StatusCodes.OK, entity = HttpEntity(MediaTypes.`application/json`, s"""{status : ${x}"""))}.recover {case ex => HttpResponse(status = StatusCodes.InternalServerError)}}def fromJson[E](json: String)(implicit m: Manifest[E]): E = {Serialization.read[E](json)}
}

当然对于一些特别的数据库表,我们还是希望使用akka-http强大的功能,如streaming。这时对于每一个这样的表单就需要要定制Route了。下面是一个定制Route的例子:

object MockModel {case class AddressRow (province: String,city: String,street: String,zip: String)case class Address(province: String,city: String,street: String,zip: String)extends ModelBase[Address,AddressRow] {def to: Address => AddressRow = addr => AddressRow (province = addr.province,city = addr.city,street = addr.street,zip = addr.zip)def from: AddressRow => Address = row => Address(province = row.province,city = row.city,street = row.street,zip = row.zip)}
}object AddressRepo {def getById(id: Long): Future[Option[Address]] = ???def getAll: Source[Address,_] = ???def filter(expr: Address => Boolean): Future[Seq[Address]] = ???def saveAll(rows: Source[Address,_]): Future[Int] = ???def saveAll(rows: Future[Seq[Address]]): Future[Int] = ???def deleteById(id: Long): Future[Address] = ???def updateById(id: Long, row: Address): Future[Address] = ???}package com.datatech.restapi
import akka.actor._
import akka.stream._
import akka.http.scaladsl.common._
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupport
import akka.http.scaladsl.server._
import MockModels.Address
import MockRepo._trait FormatConverter extends SprayJsonSupport with DefaultJsonProtocol{implicit val addrFormat = jsonFormat4(Address.apply)
}case class AddressRoute(val pathName: String)(implicit akkaSys: ActorSystem) extends Directives with FormatConverter{implicit val mat = ActorMaterializer()implicit val jsonStreamingSupport = EntityStreamingSupport.json().withParallelMarshalling(parallelism = 2, unordered = false)val route = path(pathName) {get {complete(AddressRepo.getAll)} ~ post {withoutSizeLimit {entity(asSourceOf[Address]) { source =>/*           val futSavedRows: Future[Seq[Address]] =source.runFold(Seq[Address]())((acc, addr) => acc :+ addr)onComplete(futSavedRows) { rows =>  */onComplete(AddressRepo.saveAll(source)) {rows =>complete { s"$rows address saved."}}}}} ~ path(pathName / LongNumber) { id =>get {complete(AddressRepo.getById(id)))} ~ put {entity(as[Address]) { addr =>onComplete(AddressRepo.updateById(id,addr)) { addr =>complete(s"address updated to: $addr")}} ~ delete {onComplete(AddressRepo.deleteById(id)) { addr =>complete(s"address deleted: $addr")}}
}

这样做可以灵活的使用akka-stream提供的功能。

上面的例子Mock PersonRoute.route可以直接贴在主route后面:

  val route =path("auth") {authenticateBasic(realm = "auth", authenticator.getUserInfo) { userinfo =>post { complete(authenticator.issueJwt(userinfo))}}} ~pathPrefix("openspace") {(path("hello") & get) {complete(s"Hello, you are in open space.")}} ~pathPrefix("api") {authenticateOAuth2(realm = "api", authenticator.authenticateToken) { validToken =>(path("hello") & get) {complete(s"Hello! userinfo = ${authenticator.getUserInfo(validToken)}")} ~(path("how are you") & get) {complete(s"Hello! userinfo = ${authenticator.getUserInfo(validToken)}")} ~PersonRoute.route// ~ ...}}

和前面的示范一样,我们还是写一个客户端来测试:

import akka.actor._
import akka.http.scaladsl.model.headers._
import scala.concurrent._
import scala.concurrent.duration._
import akka.http.scaladsl.Http
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupport
import akka.http.scaladsl.marshalling._
import akka.http.scaladsl.model._
import akka.stream.ActorMaterializertrait JsonFormats extends SprayJsonSupport with DefaultJsonProtocol
object JsonConverters extends JsonFormats {case class Person(name: String,age: Int)implicit val fmtPerson = jsonFormat2(Person)
}object TestCrudClient  {type UserInfo = Map[String,Any]def main(args: Array[String]): Unit = {implicit val system = ActorSystem()implicit val materializer = ActorMaterializer()// needed for the future flatMap/onComplete in the endimplicit val executionContext = system.dispatcherval helloRequest = HttpRequest(uri = "http://192.168.11.189:50081/")val authorization = headers.Authorization(BasicHttpCredentials("johnny", "p4ssw0rd"))val authRequest = HttpRequest(HttpMethods.POST,uri = "http://192.168.11.189:50081/auth",headers = List(authorization))val futToken: Future[HttpResponse] = Http().singleRequest(authRequest)val respToken = for {resp <- futTokenjstr <- resp.entity.dataBytes.runFold("") {(s,b) => s + b.utf8String}} yield jstrval jstr =  Await.result[String](respToken,2 seconds)println(jstr)scala.io.StdIn.readLine()val authentication = headers.Authorization(OAuth2BearerToken(jstr))val getAllRequest = HttpRequest(HttpMethods.GET,uri = "http://192.168.11.189:50081/api/crud/person",).addHeader(authentication)val futGet: Future[HttpResponse] = Http().singleRequest(getAllRequest)println(Await.result(futGet,2 seconds))scala.io.StdIn.readLine()import JsonConverters._val saveRequest = HttpRequest(HttpMethods.POST,uri = "http://192.168.11.189:50081/api/crud/person").addHeader(authentication)val futPost: Future[HttpResponse] =for {reqEntity <- Marshal(Person("tiger chan",18)).to[RequestEntity]response <- Http().singleRequest(saveRequest.copy(entity=reqEntity))} yield responseprintln(Await.result(futPost,2 seconds))scala.io.StdIn.readLine()system.terminate()}}

下面是restapi发展到现在状态的源代码:

build.sbt

name := "restapi"version := "0.3"scalaVersion := "2.12.8"libraryDependencies ++= Seq("com.typesafe.akka" %% "akka-http"   % "10.1.8","com.typesafe.akka" %% "akka-stream" % "2.5.23","com.pauldijou" %% "jwt-core" % "3.0.1","de.heikoseeberger" %% "akka-http-json4s" % "1.22.0","org.json4s" %% "json4s-native" % "3.6.1","com.typesafe.akka" %% "akka-http-spray-json" % "10.1.8","com.typesafe.scala-logging" %% "scala-logging" % "3.9.0","org.slf4j" % "slf4j-simple" % "1.7.25","org.json4s" %% "json4s-jackson" % "3.6.7","org.json4s" %% "json4s-ext" % "3.6.7"
)

RestApiServer.scala

package com.datatech.restapiimport akka.actor._
import akka.stream._
import akka.http.scaladsl.Http
import akka.http.scaladsl.server.Directives._
import pdi.jwt._
import AuthBase._
import MockUserAuthService._object RestApiServer extends App {implicit val httpSys = ActorSystem("httpSystem")implicit val httpMat = ActorMaterializer()implicit val httpEC = httpSys.dispatcherimplicit val authenticator = new AuthBase().withAlgorithm(JwtAlgorithm.HS256).withSecretKey("OpenSesame").withUserFunc(getValidUser)val route =path("auth") {authenticateBasic(realm = "auth", authenticator.getUserInfo) { userinfo =>post { complete(authenticator.issueJwt(userinfo))}}} ~pathPrefix("api") {authenticateOAuth2(realm = "api", authenticator.authenticateToken) { validToken =>FileRoute(validToken).route ~(pathPrefix("crud")) {PersonRoute.route}// ~ ...} ~(pathPrefix("crud")) {PersonRoute.route// ~ ...}}val (port, host) = (50081,"192.168.11.189")val bindingFuture = Http().bindAndHandle(route,host,port)println(s"Server running at $host $port. Press any key to exit ...")scala.io.StdIn.readLine()bindingFuture.flatMap(_.unbind()).onComplete(_ => httpSys.terminate())}

 

这篇关于restapi(2)- generic restful CRUD:通用的restful风格数据库表维护工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/887190

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

数据库oracle用户密码过期查询及解决方案

《数据库oracle用户密码过期查询及解决方案》:本文主要介绍如何处理ORACLE数据库用户密码过期和修改密码期限的问题,包括创建用户、赋予权限、修改密码、解锁用户和设置密码期限,文中通过代码介绍... 目录前言一、创建用户、赋予权限、修改密码、解锁用户和设置期限二、查询用户密码期限和过期后的修改1.查询用

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

IDEA如何切换数据库版本mysql5或mysql8

《IDEA如何切换数据库版本mysql5或mysql8》本文介绍了如何将IntelliJIDEA从MySQL5切换到MySQL8的详细步骤,包括下载MySQL8、安装、配置、停止旧服务、启动新服务以及... 目录问题描述解决方案第一步第二步第三步第四步第五步总结问题描述最近想开发一个新应用,想使用mysq

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

基于C#实现PDF文件合并工具

《基于C#实现PDF文件合并工具》这篇文章主要为大家详细介绍了如何基于C#实现一个简单的PDF文件合并工具,文中的示例代码简洁易懂,有需要的小伙伴可以跟随小编一起学习一下... 界面主要用于发票PDF文件的合并。经常出差要报销的很有用。代码using System;using System.Col

redis-cli命令行工具的使用小结

《redis-cli命令行工具的使用小结》redis-cli是Redis的命令行客户端,支持多种参数用于连接、操作和管理Redis数据库,本文给大家介绍redis-cli命令行工具的使用小结,感兴趣的... 目录基本连接参数基本连接方式连接远程服务器带密码连接操作与格式参数-r参数重复执行命令-i参数指定命

使用SpringBoot创建一个RESTful API的详细步骤

《使用SpringBoot创建一个RESTfulAPI的详细步骤》使用Java的SpringBoot创建RESTfulAPI可以满足多种开发场景,它提供了快速开发、易于配置、可扩展、可维护的优点,尤... 目录一、创建 Spring Boot 项目二、创建控制器类(Controller Class)三、运行

Java读取InfluxDB数据库的方法详解

《Java读取InfluxDB数据库的方法详解》本文介绍基于Java语言,读取InfluxDB数据库的方法,包括读取InfluxDB的所有数据库,以及指定数据库中的measurement、field、... 首先,创建一个Java项目,用于撰写代码。接下来,配置所需要的依赖;这里我们就选择可用于与Infl