基于starganvc2的变声器论文原理解读

2024-04-08 12:04

本文主要是介绍基于starganvc2的变声器论文原理解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据与代码见文末

论文地址:https://arxiv.org/pdf/1907.12279.pdf

1.概述

        什么是变声器,变声器就是将语音特征进行转换,而语音内容不改变

        那么我们如何构建一个变声器呢? 

         首先,我们肯定不能为转换的每一种风格的声音训练一种网络,因此我们可以采用star gan的思想(参见:Star GAN论文解析-CSDN博客),只训练一个对抗生成网络解决所有问题。当然,任务不同,具体的网络结构需要改变

        需要的什么输入呢?输入当然是声音数据和标签编码(one hot类型)。

2.输入数据

        输入声音数据最重要的指标为频率,即每秒钟波峰所发生的数目称之为信号的频率,用单位千赫兹(kHz)表示

        通常来讲,声音信号为一段剧烈震荡的波形,当我们将声音信号不断放大时,就有可能出现一个一个的小线段(极限的思想)。例如0.1ms,此时我们可以对声音进行采样,例如秒0.1ms 4.8次,最终声音频率为4.8kHZ

3.语音特征提取

(1)声音信号的预处理

  • 首先,进行16KHZ重采样,即每秒采用16k次
  • 然后,进行预加重,通过来说,高频信号价值更大,于是我们补偿高频信号,让高频信号权重更大一些       
  • 分帧,类似时间窗口,得到多个特征段 

(2)特征汇总

        基频特征(FO):声音可以分解成不同频率的正弦波,其中频率最低的那个就是基频特征

        频谱包络:语音是一个时序信号,如采样频率为16kHz的音频文件(每秒包含16000个采样点)分后得到了多个子序列,然后对每个子序列进行傅里叶变换操作,就得到了频率-振幅图(也就是描述频率-振幅图变化趋势的)

        Aperiadic参数:基于FO与频谱包络计算得到

(3)MFCC

        流程:连续语音--预加重--加窗分帧--FFT傅里叶变换--MEL滤波器组--对数运算--DCT 

        通常来讲,我们人对低频的声音更敏感,例如从100HZ到200HZ,我们明显能够感觉到声音的变化。而如果声音从4000HZ到4100HZ,我们则感觉不到明显的变化。这可以从斜率的角度理解,其图像类似于一个对数函数。 

         

        FFT(傅里叶变换)之后就把语音转换到频域,MEL滤波器变换后相当于去模拟人类听觉效果。

         

        最后DCT相当于提取每一帧的包络 (这里面特征多) 

4.网络架构

(1)生成器网络结构

        在生成器中,首先进行下采样,然后提取特征,最后上采样,输出结果,类似与ecoder和decoder的过程。

(2)Instance normalization的作用

        在声音数据中,有语音特征和文本特征,对于语音特征我们希望保留其原始内容。

        Instance  normalization是从每一个实例维度出发进行归一化。即首先使用多组卷积进行特征提取,然后对每个特征图进行归一化。经过归一化后,声音特征被平均化,从而消除了特性,而基本的文本特征被保留。

        

(3)AdaIn的目的与效果 

         AdaIn主要用于解码器中,需要我们还原其声音特性。AdaIn有点类似于通道注意力,即使用FC层为每个通过学习一个权重项和偏置项,注意FC层学习的参数是基于标签的one-hot变量学习而来。

        

        (4)判别器

         判别器主要用于判断声音是原始的还是合成的,即判断真假。对于输入的声音数据,不断进行下采样。最后得到真假的预测。真预测接近于1,假预测接近于0.

        标签的处理:首先每个domain进行one hot编码,得到B*d的编码向量,然后将sourse和target进行拼接。拼接后编码为B*C的向量。而GSP层会将输出向量B*C*H*W压成B*C的向量,最后和标签得到的向量内积得到B*C的向量,对最终结果在sum一下得到B*1的向量,然后加入经过FC层的B*1的向量x中,最终得到预测值

数据与代码链接:https://pan.baidu.com/s/1aNlghgo6mtD4iWqNgMOWOQ?pwd=s206 
提取码:s206 

        

        

这篇关于基于starganvc2的变声器论文原理解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/885534

相关文章

解读docker运行时-itd参数是什么意思

《解读docker运行时-itd参数是什么意思》在Docker中,-itd参数组合用于在后台运行一个交互式容器,同时保持标准输入和分配伪终端,这种方式适合需要在后台运行容器并保持交互能力的场景... 目录docker运行时-itd参数是什么意思1. -i(或 --interactive)2. -t(或 --

Spring Cloud Hystrix原理与注意事项小结

《SpringCloudHystrix原理与注意事项小结》本文介绍了Hystrix的基本概念、工作原理以及其在实际开发中的应用方式,通过对Hystrix的深入学习,开发者可以在分布式系统中实现精细... 目录一、Spring Cloud Hystrix概述和设计目标(一)Spring Cloud Hystr

解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题

《解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题》在Spring开发中,@Autowired注解常用于实现依赖注入,它可以应用于类的属性、构造器或setter方法上,然... 目录1. 为什么 @Autowired 在属性上被警告?1.1 隐式依赖注入1.2 IDE 的警告:

Rust中的注释使用解读

《Rust中的注释使用解读》本文介绍了Rust中的行注释、块注释和文档注释的使用方法,通过示例展示了如何在实际代码中应用这些注释,以提高代码的可读性和可维护性... 目录Rust 中的注释使用指南1. 行注释示例:行注释2. 块注释示例:块注释3. 文档注释示例:文档注释4. 综合示例总结Rust 中的注释

解读Pandas和Polars的区别及说明

《解读Pandas和Polars的区别及说明》Pandas和Polars是Python中用于数据处理的两个库,Pandas适用于中小规模数据的快速原型开发和复杂数据操作,而Polars则专注于高效数据... 目录Pandas vs Polars 对比表使用场景对比Pandas 的使用场景Polars 的使用

Rust中的Drop特性之解读自动化资源清理的魔法

《Rust中的Drop特性之解读自动化资源清理的魔法》Rust通过Drop特性实现了自动清理机制,确保资源在对象超出作用域时自动释放,避免了手动管理资源时可能出现的内存泄漏或双重释放问题,智能指针如B... 目录自动清理机制:Rust 的析构函数提前释放资源:std::mem::drop android的妙

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每