蓝桥杯第十四届C++C组

2024-04-08 00:20
文章标签 c++ 蓝桥 第十四届

本文主要是介绍蓝桥杯第十四届C++C组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

三国游戏

填充 

翻转 

【单调队列优化DP】子矩阵 

【快速幂、欧拉函数】互质数的个数

【tire树】异或和之差

【质因数分解】公因数匹配

子树的大小


三国游戏

题目描述

小蓝正在玩一款游戏。游戏中魏蜀吴三个国家各自拥有一定数量的士兵X, Y, Z (一开始可以认为都为 0 )。游戏有 n 个可能会发生的事件,每个事件之间相互独立且最多只会发生一次,当第 i 个事件发生时会分别让 X, Y, Z 增加Ai , Bi ,Ci 。

当游戏结束时 (所有事件的发生与否已经确定),如果 X, Y, Z 的其中一个大于另外两个之和,我们认为其获胜。例如,当 X > Y + Z 时,我们认为魏国获胜。小蓝想知道游戏结束时如果有其中一个国家获胜,最多发生了多少个事件?

如果不存在任何能让某国获胜的情况,请输出 −1 。

输入格式

输入的第一行包含一个整数 n 。

第二行包含 n 个整数表示 Ai,相邻整数之间使用一个空格分隔。

第三行包含 n 个整数表示 Bi,相邻整数之间使用一个空格分隔。

第四行包含 n 个整数表示 Ci,相邻整数之间使用一个空格分隔。

输出格式

输出一行包含一个整数表示答案。

样例输入

3
1 2 2
2 3 2
1 0 7

样例输出

2

提示

发生两个事件时,有两种不同的情况会出现获胜方。

发生 1, 2 事件时蜀国获胜。

发生 1, 3 事件时吴国获胜。

对于 40% 的评测用例,n ≤ 500 ;

对于 70% 的评测用例,n ≤ 5000 ;

对于所有评测用例,1 ≤ n ≤ 10^5,1 ≤ Ai , Bi ,Ci ≤ 10^9 。

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=1e5+10;
typedef long long LL;
LL a[N],b[N],c[N],d[N];
int n;
int get(LL x[],LL y[],LL z[]){memset(d,0,sizeof d);for(int i=1;i<=n;i++) d[i]=x[i]-(y[i]+z[i]);sort(d+1,d+1+n);LL t=-1;LL sum=0;for(int i=n;i>=1;i--){sum+=d[i];if(sum>0){t=n-i+1;}else{return t;}}
}
int main(){cin>>n;for(int i=1;i<=n;i++) cin>>a[i];for(int i=1;i<=n;i++) cin>>b[i];for(int i=1;i<=n;i++) cin>>c[i];int maxv=-1;maxv=max(maxv,get(a,b,c));maxv=max(maxv,get(b,a,c));maxv=max(maxv,get(c,a,b));cout<<maxv<<endl;return 0;
}

填充 

题目描述

有一个长度为 n 的 01 串,其中有一些位置标记为 ?,这些位置上可以任意填充 0 或者 1,请问如何填充这些位置使得这个 01 串中出现互不重叠的 00 和 11 子串最多,输出子串个数。

输入格式

输入一行包含一个字符串。

输出格式

输出一行包含一个整数表示答案。

样例输入

1110?0

样例输出

2

提示

如果在问号处填 0 ,则最多出现一个 00 和一个 11:111000 。

对于所有评测用例,1 ≤ n ≤ 1000000 。

#include<iostream>
using namespace std;
int main(){string s;cin>>s;int cnt=0;for(int i=1;i<s.size();i++){if(s[i]==s[i-1]||s[i-1]=='?'||s[i]=='?'){cnt++;i++;}}cout<<cnt<<endl;return 0;
}

翻转 

题目描述

小蓝用黑白棋的 n 个棋子排成了一行,他在脑海里想象出了一个长度为 n 的 01 串 T,他发现如果把黑棋当做 1,白棋当做 0,这一行棋子也是一个长度为 n 的 01 串 S。

小蓝决定,如果在 S 中发现一个棋子和它两边的棋子都不一样,就可以将其翻转变成另一个颜色。也就是说,如果 S 中存在子串 101 或者 010,就可以选择将其分别变为 111 和 000,这样的操作可以无限重复。

小蓝想知道最少翻转多少次可以把 S 变成和 T 一模一样。

输入格式

输入包含多组数据。

输入的第一行包含一个正整数 D 表示数据组数。

后面 2D 行每行包含一个 01 串,每两行为一组数据,第 2i − 1 行为第 i 组

数据的 Ti,第 2i 行为第 i 组数据的 Si,Si 和 Ti 长度均为 ni。

输出格式

对于每组数据,输出一行包含一个整数,表示答案,如果答案不存在请输出 −1。

样例输入

2
1000111
1010101
01000
11000

样例输出

2
-1

提示

对于 20% 的评测用例,1 ≤\sum _{1}^{D} ni ≤ 10 ;
对于所有评测用例,保证 1 ≤\sum _{1}^{D} ni ≤ 10^6 ,ni > 0 。

#include<iostream>
using namespace std;
int n;
string t,s;
bool check(int i){if(i==0||i==n-1) return 0;if(s[i-1]==t[i-1]&&s[i+1]==t[i+1]&&s[i-1]==s[i+1]&&s[i]!=s[i-1]) return 1;return 0;}
int main(){int T;cin>>T;while(T--){cin>>t>>s;n=s.size();bool flag=1;int cnt=0;for(int i=0;i<n;i++){if(s[i]!=t[i]){if(check(i)) cnt++;else {flag=0;break;}}}if(flag) cout<<cnt<<endl;else cout<<"-1"<<endl;}return 0;
}

【单调队列优化DP】子矩阵 

题目描述

给定一个 n × m (n 行 m 列)的矩阵。

设一个矩阵的价值为其所有数中的最大值和最小值的乘积。求给定矩阵的所有大小为 a × b (a 行 b 列)的子矩阵的价值的和。

答案可能很大,你只需要输出答案对 998244353 取模后的结果。

输入格式

输入的第一行包含四个整数分别表示 n, m, a, b ,相邻整数之间使用一个空格分隔。

接下来 n 行每行包含 m 个整数,相邻整数之间使用一个空格分隔,表示矩阵中的每个数 Ai, j 。

输出格式

输出一行包含一个整数表示答案。

样例输入

2 3 1 2
1 2 3
4 5 6

样例输出

58

提示

1×2+2×3+4×5+5×6 = 58 。

对于 40% 的评测用例,1 ≤ n, m ≤ 100 ;

对于 70% 的评测用例,1 ≤ n, m ≤ 500 ;

对于所有评测用例,1 ≤ a ≤ n ≤ 1000 1 ≤ b ≤ m ≤ 1000 1 ≤ Ai, j ≤ 10^9 。

#include<iostream>
#include<deque>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=1010;
LL g[N][N],minv[N][N],maxv[N][N];
LL a[N],b[N],c[N];
int n,m,x,y;
void get_max(LL a[],LL b[],int n,int k){deque<int> q;q.push_back(0);for(int i=1;i<=n;i++){while(q.size()&&a[q.back()]<=a[i]) q.pop_back();q.push_back(i);while(q.size()&&i-q.front()>=k) q.pop_front();b[i]=a[q.front()];}
}
void get_min(LL a[],LL b[],int n,int k){deque<int> q;q.push_back(0);for(int i=1;i<=n;i++){while(q.size()&&a[q.back()]>=a[i]) q.pop_back();q.push_back(i);while(q.size()&&i-q.front()>=k) q.pop_front();b[i]=a[q.front()];}
}
int main(){cin>>n>>m>>x>>y;for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){cin>>g[i][j];}}for(int i=1;i<=n;i++){get_max(g[i],maxv[i],m,y);get_min(g[i],minv[i],m,y);}LL sum=0;for(int j=y;j<=m;j++){for(int i=1;i<=n;i++) c[i]=maxv[i][j];get_max(c,a,n,x);for(int i=1;i<=n;i++) c[i]=minv[i][j];get_min(c,b,n,x);for(int i=x;i<=n;i++){sum=(sum+(a[i]*b[i])%998244353)%998244353;}}cout<<sum<<endl;return 0;
}

【快速幂、欧拉函数】互质数的个数

给定 a, b,求 1 ≤ x < a^b 中有多少个 x 与 a^b 互质。由于答案可能很大,你只需要输出答案对 998244353 取模的结果。

输入格式

输入一行包含两个整数分别表示 a, b,用一个空格分隔。

输出格式

输出一行包含一个整数表示答案。

样例输入

2 5

样例输出

16

提示

对于 30% 的评测用例,a^b ≤ 10^6 ;

对于 70% 的评测用例,a ≤ 106,b ≤ 10^9 ;

对于所有评测用例,1 ≤ a ≤ 10^9,1 ≤ b ≤ 101^8 。

#include<iostream>
using namespace std;
typedef long long LL;
const int mod=998244353;
LL quick_pow(LL a,LL b){LL res=1;while(b){if(b&1) res=res*a%mod;a=a*a%mod;b>>=1;}return res;
}
LL eu(LL n){LL res=n;for(LL i=2;i<=n/i;i++){if(n%i==0){res=res*(i-1)/i%mod;while(n%i==0) n/=i;}}if(n>1) res=res*(n-1)/n%mod;return res;
}
int main(){LL a,b;cin>>a>>b;LL n=quick_pow(a,b);cout<<eu(n)%mod<<endl;return 0;
}

【tire树】异或和之差

题目描述

给定一个含有 n 个元素的数组 Ai,你可以选择两个不相交的子段。求出这两个子段内的数的异或和的差值的最大值。

输入格式

输入的第一行包含一个整数 n 。

第二行包含 n 个整数 Ai ,相邻整数之间使用一个空格分隔。

输出格式

输出一行包含一个整数表示答案。

样例输入

6
1 2 4 9 2 7

样例输出

14

提示

两个子段可以分别选 1 和 4,9,2,差值为 15 − 1 = 14 。

对于 40% 的评测用例,n ≤ 5000 ;

对于所有评测用例,2 ≤ n ≤ 2 × 10^5,0 ≤ Ai ≤ 2^20 。

区间 [l,r] 异或和最大就相当于 S_{r}\bigoplus S_{l-1} 最大,即从异或前缀和 s 中找到两个数异或最大,异或和最小同理。

#include<iostream>
#include<vector>
#include<cstring>
#include<map>
#define int long long
using namespace std;
const int N=2e5+10,M=4e6+10;
int son[M][2];
int idx=0;
int a[N];
int lmx[N],lmi[N],rmx,rmi=2e9;
void insert(int x){int p=0;for(int i=20;i>=0;i--){int u=x>>i&1;if(!son[p][u]){son[p][u]=++idx;}p=son[p][u];}
}
//求异或最大需要尽可能多 不相同 的位数
int query_max(int x){int p=0;int res=0;for(int i=20;i>=0;i--){int u=x>>i&1;if(son[p][!u]){res+=1<<i;p=son[p][!u];}else{p=son[p][u];}}return res;
}
//求异或最小需要尽可能多 相同 的位数
int query_min(int x){int p=0,res=0;for(int i=20;i>=0;i--){int u=x>>i&1;if(son[p][u]){p=son[p][u];}else{res+=1<<i;p=son[p][!u];}}return res;
}
signed main(){int n;cin>>n;int maxv=0;for(int i=1;i<=n;i++){cin>>a[i];}int sum=0;//异或前缀和insert(sum);lmx[0]=0,lmi[0]=2e9;for(int i=1;i<=n;i++){sum^=a[i];//前i中最大(最小)的区间异或和lmx[i]=max(lmx[i-1],query_max(sum));lmi[i]=min(lmi[i-1],query_min(sum));insert(sum);//构造树}memset(son,0,sizeof son);sum=0;idx=0;insert(sum);int res=0;for(int i=n;i>=1;i--){sum^=a[i];rmx=max(rmx,query_max(sum));rmi=min(rmi,query_min(sum));res=max(max(res,lmx[i-1]-rmi),rmx-lmi[i-1]);insert(sum);}cout<<res<<endl;return 0;
}

【质因数分解】公因数匹配

题目描述

给定 n 个正整数 Ai,请找出两个数 i, j 使得 i < j 且 Ai 和 Aj 存在大于 1 的公因数。

如果存在多组 i, j,请输出 i 最小的那组。如果仍然存在多组 i, j,请输出 i 最小的所有方案中 j 最小的那组。

输入格式

输入的第一行包含一个整数 n。

第二行包含 n 个整数分别表示 A1 A2 · · · An,相邻整数之间使用一个空格分隔。

输出格式

输出一行包含两个整数分别表示题目要求的 i, j,用一个空格分隔。

样例输入

5
5 3 2 6 9

样例输出

2 4

提示

对于 40% 的评测用例,n ≤ 5000 ;

对于所有评测用例,1 ≤ n ≤ 105,1 ≤ Ai ≤ 106 。

#include<iostream>
#include<vector>
#include<map>
#define int long long
using namespace std;
const int N=1e5+10;
int a[N];
map<int,int> mp;//存储每个质因子第一次出现的位置
int get(int i){int pos=1e9;int t=a[i];for(int j=2;j*j<=t;j++){if(t%j==0){if(!mp[j]) mp[j]=i;else pos=min(pos,mp[j]);while(t%j==0) t/=j;}}if(t>1){if(!mp[t]) mp[t]=i;else pos=min(pos,mp[t]);}return pos;
}
signed main(){int n;cin>>n;for(int i=1;i<=n;i++){cin>>a[i];}int x=1e9,y=1e9;for(int i=1;i<=n;i++){int pos=get(i);if(pos!=1e9){if(pos<x||pos==x&&i<y){x=pos,y=i;}}}cout<<x<<' '<<y<<endl;return 0;
}

子树的大小

题目描述

给定一棵包含 n 个结点的完全 m 叉树,结点按从根到叶、从左到右的顺序依次编号。

例如下图是一个拥有 11 个结点的完全 3 叉树。

蓝桥杯2023年第十四届省赛真题-子树的大小

你需要求出第 k 个结点对应的子树拥有的结点数量。

输入格式

输入包含多组询问。

输入的第一行包含一个整数 T ,表示询问次数。

接下来 T 行,每行包含三个整数 n, m, k 表示一组询问。

输出格式

输出 T 行,每行包含一个整数表示对应询问的答案。

样例输入

3
1 2 1
11 3 4
74 5 3

样例输出

1
2
24

提示

对于 40% 的评测用例,T ≤ 50,n ≤ 10^6,m ≤ 16 ;

对于所有评测用例,1 ≤ T ≤ 10^5,1 ≤ k ≤ n ≤ 10^9,2 ≤ m ≤ 10^9 。

#include<iostream>
#include<vector>
#include<map>
#define int long long
using namespace std;
const int N=1e5+10;
int a[N];
signed main(){int T;scanf("%lld",&T);while(T--){int n,m,k;scanf("%lld%lld%lld",&n,&m,&k);bool flag=1;int cnt=1;int l=k,r=k;while(flag){//迭代计算k节点的子节点个数l=(l-1)*m+2;//最左边子节点的编号r=r*m+1;//最右边子节点的编号if(r>n){r=n;flag=0;}if(l<=n) cnt+=r-l+1;}printf("%lld\n",cnt);}return 0;
}

这篇关于蓝桥杯第十四届C++C组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884073

相关文章

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

c++的初始化列表与const成员

初始化列表与const成员 const成员 使用const修饰的类、结构、联合的成员变量,在类对象创建完成前一定要初始化。 不能在构造函数中初始化const成员,因为执行构造函数时,类对象已经创建完成,只有类对象创建完成才能调用成员函数,构造函数虽然特殊但也是成员函数。 在定义const成员时进行初始化,该语法只有在C11语法标准下才支持。 初始化列表 在构造函数小括号后面,主要用于给

2024/9/8 c++ smart

1.通过自己编写的class来实现unique_ptr指针的功能 #include <iostream> using namespace std; template<class T> class unique_ptr { public:         //无参构造函数         unique_ptr();         //有参构造函数         unique_ptr(