蓝桥杯第十四届C++C组

2024-04-08 00:20
文章标签 c++ 蓝桥 第十四届

本文主要是介绍蓝桥杯第十四届C++C组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

三国游戏

填充 

翻转 

【单调队列优化DP】子矩阵 

【快速幂、欧拉函数】互质数的个数

【tire树】异或和之差

【质因数分解】公因数匹配

子树的大小


三国游戏

题目描述

小蓝正在玩一款游戏。游戏中魏蜀吴三个国家各自拥有一定数量的士兵X, Y, Z (一开始可以认为都为 0 )。游戏有 n 个可能会发生的事件,每个事件之间相互独立且最多只会发生一次,当第 i 个事件发生时会分别让 X, Y, Z 增加Ai , Bi ,Ci 。

当游戏结束时 (所有事件的发生与否已经确定),如果 X, Y, Z 的其中一个大于另外两个之和,我们认为其获胜。例如,当 X > Y + Z 时,我们认为魏国获胜。小蓝想知道游戏结束时如果有其中一个国家获胜,最多发生了多少个事件?

如果不存在任何能让某国获胜的情况,请输出 −1 。

输入格式

输入的第一行包含一个整数 n 。

第二行包含 n 个整数表示 Ai,相邻整数之间使用一个空格分隔。

第三行包含 n 个整数表示 Bi,相邻整数之间使用一个空格分隔。

第四行包含 n 个整数表示 Ci,相邻整数之间使用一个空格分隔。

输出格式

输出一行包含一个整数表示答案。

样例输入

3
1 2 2
2 3 2
1 0 7

样例输出

2

提示

发生两个事件时,有两种不同的情况会出现获胜方。

发生 1, 2 事件时蜀国获胜。

发生 1, 3 事件时吴国获胜。

对于 40% 的评测用例,n ≤ 500 ;

对于 70% 的评测用例,n ≤ 5000 ;

对于所有评测用例,1 ≤ n ≤ 10^5,1 ≤ Ai , Bi ,Ci ≤ 10^9 。

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=1e5+10;
typedef long long LL;
LL a[N],b[N],c[N],d[N];
int n;
int get(LL x[],LL y[],LL z[]){memset(d,0,sizeof d);for(int i=1;i<=n;i++) d[i]=x[i]-(y[i]+z[i]);sort(d+1,d+1+n);LL t=-1;LL sum=0;for(int i=n;i>=1;i--){sum+=d[i];if(sum>0){t=n-i+1;}else{return t;}}
}
int main(){cin>>n;for(int i=1;i<=n;i++) cin>>a[i];for(int i=1;i<=n;i++) cin>>b[i];for(int i=1;i<=n;i++) cin>>c[i];int maxv=-1;maxv=max(maxv,get(a,b,c));maxv=max(maxv,get(b,a,c));maxv=max(maxv,get(c,a,b));cout<<maxv<<endl;return 0;
}

填充 

题目描述

有一个长度为 n 的 01 串,其中有一些位置标记为 ?,这些位置上可以任意填充 0 或者 1,请问如何填充这些位置使得这个 01 串中出现互不重叠的 00 和 11 子串最多,输出子串个数。

输入格式

输入一行包含一个字符串。

输出格式

输出一行包含一个整数表示答案。

样例输入

1110?0

样例输出

2

提示

如果在问号处填 0 ,则最多出现一个 00 和一个 11:111000 。

对于所有评测用例,1 ≤ n ≤ 1000000 。

#include<iostream>
using namespace std;
int main(){string s;cin>>s;int cnt=0;for(int i=1;i<s.size();i++){if(s[i]==s[i-1]||s[i-1]=='?'||s[i]=='?'){cnt++;i++;}}cout<<cnt<<endl;return 0;
}

翻转 

题目描述

小蓝用黑白棋的 n 个棋子排成了一行,他在脑海里想象出了一个长度为 n 的 01 串 T,他发现如果把黑棋当做 1,白棋当做 0,这一行棋子也是一个长度为 n 的 01 串 S。

小蓝决定,如果在 S 中发现一个棋子和它两边的棋子都不一样,就可以将其翻转变成另一个颜色。也就是说,如果 S 中存在子串 101 或者 010,就可以选择将其分别变为 111 和 000,这样的操作可以无限重复。

小蓝想知道最少翻转多少次可以把 S 变成和 T 一模一样。

输入格式

输入包含多组数据。

输入的第一行包含一个正整数 D 表示数据组数。

后面 2D 行每行包含一个 01 串,每两行为一组数据,第 2i − 1 行为第 i 组

数据的 Ti,第 2i 行为第 i 组数据的 Si,Si 和 Ti 长度均为 ni。

输出格式

对于每组数据,输出一行包含一个整数,表示答案,如果答案不存在请输出 −1。

样例输入

2
1000111
1010101
01000
11000

样例输出

2
-1

提示

对于 20% 的评测用例,1 ≤\sum _{1}^{D} ni ≤ 10 ;
对于所有评测用例,保证 1 ≤\sum _{1}^{D} ni ≤ 10^6 ,ni > 0 。

#include<iostream>
using namespace std;
int n;
string t,s;
bool check(int i){if(i==0||i==n-1) return 0;if(s[i-1]==t[i-1]&&s[i+1]==t[i+1]&&s[i-1]==s[i+1]&&s[i]!=s[i-1]) return 1;return 0;}
int main(){int T;cin>>T;while(T--){cin>>t>>s;n=s.size();bool flag=1;int cnt=0;for(int i=0;i<n;i++){if(s[i]!=t[i]){if(check(i)) cnt++;else {flag=0;break;}}}if(flag) cout<<cnt<<endl;else cout<<"-1"<<endl;}return 0;
}

【单调队列优化DP】子矩阵 

题目描述

给定一个 n × m (n 行 m 列)的矩阵。

设一个矩阵的价值为其所有数中的最大值和最小值的乘积。求给定矩阵的所有大小为 a × b (a 行 b 列)的子矩阵的价值的和。

答案可能很大,你只需要输出答案对 998244353 取模后的结果。

输入格式

输入的第一行包含四个整数分别表示 n, m, a, b ,相邻整数之间使用一个空格分隔。

接下来 n 行每行包含 m 个整数,相邻整数之间使用一个空格分隔,表示矩阵中的每个数 Ai, j 。

输出格式

输出一行包含一个整数表示答案。

样例输入

2 3 1 2
1 2 3
4 5 6

样例输出

58

提示

1×2+2×3+4×5+5×6 = 58 。

对于 40% 的评测用例,1 ≤ n, m ≤ 100 ;

对于 70% 的评测用例,1 ≤ n, m ≤ 500 ;

对于所有评测用例,1 ≤ a ≤ n ≤ 1000 1 ≤ b ≤ m ≤ 1000 1 ≤ Ai, j ≤ 10^9 。

#include<iostream>
#include<deque>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=1010;
LL g[N][N],minv[N][N],maxv[N][N];
LL a[N],b[N],c[N];
int n,m,x,y;
void get_max(LL a[],LL b[],int n,int k){deque<int> q;q.push_back(0);for(int i=1;i<=n;i++){while(q.size()&&a[q.back()]<=a[i]) q.pop_back();q.push_back(i);while(q.size()&&i-q.front()>=k) q.pop_front();b[i]=a[q.front()];}
}
void get_min(LL a[],LL b[],int n,int k){deque<int> q;q.push_back(0);for(int i=1;i<=n;i++){while(q.size()&&a[q.back()]>=a[i]) q.pop_back();q.push_back(i);while(q.size()&&i-q.front()>=k) q.pop_front();b[i]=a[q.front()];}
}
int main(){cin>>n>>m>>x>>y;for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){cin>>g[i][j];}}for(int i=1;i<=n;i++){get_max(g[i],maxv[i],m,y);get_min(g[i],minv[i],m,y);}LL sum=0;for(int j=y;j<=m;j++){for(int i=1;i<=n;i++) c[i]=maxv[i][j];get_max(c,a,n,x);for(int i=1;i<=n;i++) c[i]=minv[i][j];get_min(c,b,n,x);for(int i=x;i<=n;i++){sum=(sum+(a[i]*b[i])%998244353)%998244353;}}cout<<sum<<endl;return 0;
}

【快速幂、欧拉函数】互质数的个数

给定 a, b,求 1 ≤ x < a^b 中有多少个 x 与 a^b 互质。由于答案可能很大,你只需要输出答案对 998244353 取模的结果。

输入格式

输入一行包含两个整数分别表示 a, b,用一个空格分隔。

输出格式

输出一行包含一个整数表示答案。

样例输入

2 5

样例输出

16

提示

对于 30% 的评测用例,a^b ≤ 10^6 ;

对于 70% 的评测用例,a ≤ 106,b ≤ 10^9 ;

对于所有评测用例,1 ≤ a ≤ 10^9,1 ≤ b ≤ 101^8 。

#include<iostream>
using namespace std;
typedef long long LL;
const int mod=998244353;
LL quick_pow(LL a,LL b){LL res=1;while(b){if(b&1) res=res*a%mod;a=a*a%mod;b>>=1;}return res;
}
LL eu(LL n){LL res=n;for(LL i=2;i<=n/i;i++){if(n%i==0){res=res*(i-1)/i%mod;while(n%i==0) n/=i;}}if(n>1) res=res*(n-1)/n%mod;return res;
}
int main(){LL a,b;cin>>a>>b;LL n=quick_pow(a,b);cout<<eu(n)%mod<<endl;return 0;
}

【tire树】异或和之差

题目描述

给定一个含有 n 个元素的数组 Ai,你可以选择两个不相交的子段。求出这两个子段内的数的异或和的差值的最大值。

输入格式

输入的第一行包含一个整数 n 。

第二行包含 n 个整数 Ai ,相邻整数之间使用一个空格分隔。

输出格式

输出一行包含一个整数表示答案。

样例输入

6
1 2 4 9 2 7

样例输出

14

提示

两个子段可以分别选 1 和 4,9,2,差值为 15 − 1 = 14 。

对于 40% 的评测用例,n ≤ 5000 ;

对于所有评测用例,2 ≤ n ≤ 2 × 10^5,0 ≤ Ai ≤ 2^20 。

区间 [l,r] 异或和最大就相当于 S_{r}\bigoplus S_{l-1} 最大,即从异或前缀和 s 中找到两个数异或最大,异或和最小同理。

#include<iostream>
#include<vector>
#include<cstring>
#include<map>
#define int long long
using namespace std;
const int N=2e5+10,M=4e6+10;
int son[M][2];
int idx=0;
int a[N];
int lmx[N],lmi[N],rmx,rmi=2e9;
void insert(int x){int p=0;for(int i=20;i>=0;i--){int u=x>>i&1;if(!son[p][u]){son[p][u]=++idx;}p=son[p][u];}
}
//求异或最大需要尽可能多 不相同 的位数
int query_max(int x){int p=0;int res=0;for(int i=20;i>=0;i--){int u=x>>i&1;if(son[p][!u]){res+=1<<i;p=son[p][!u];}else{p=son[p][u];}}return res;
}
//求异或最小需要尽可能多 相同 的位数
int query_min(int x){int p=0,res=0;for(int i=20;i>=0;i--){int u=x>>i&1;if(son[p][u]){p=son[p][u];}else{res+=1<<i;p=son[p][!u];}}return res;
}
signed main(){int n;cin>>n;int maxv=0;for(int i=1;i<=n;i++){cin>>a[i];}int sum=0;//异或前缀和insert(sum);lmx[0]=0,lmi[0]=2e9;for(int i=1;i<=n;i++){sum^=a[i];//前i中最大(最小)的区间异或和lmx[i]=max(lmx[i-1],query_max(sum));lmi[i]=min(lmi[i-1],query_min(sum));insert(sum);//构造树}memset(son,0,sizeof son);sum=0;idx=0;insert(sum);int res=0;for(int i=n;i>=1;i--){sum^=a[i];rmx=max(rmx,query_max(sum));rmi=min(rmi,query_min(sum));res=max(max(res,lmx[i-1]-rmi),rmx-lmi[i-1]);insert(sum);}cout<<res<<endl;return 0;
}

【质因数分解】公因数匹配

题目描述

给定 n 个正整数 Ai,请找出两个数 i, j 使得 i < j 且 Ai 和 Aj 存在大于 1 的公因数。

如果存在多组 i, j,请输出 i 最小的那组。如果仍然存在多组 i, j,请输出 i 最小的所有方案中 j 最小的那组。

输入格式

输入的第一行包含一个整数 n。

第二行包含 n 个整数分别表示 A1 A2 · · · An,相邻整数之间使用一个空格分隔。

输出格式

输出一行包含两个整数分别表示题目要求的 i, j,用一个空格分隔。

样例输入

5
5 3 2 6 9

样例输出

2 4

提示

对于 40% 的评测用例,n ≤ 5000 ;

对于所有评测用例,1 ≤ n ≤ 105,1 ≤ Ai ≤ 106 。

#include<iostream>
#include<vector>
#include<map>
#define int long long
using namespace std;
const int N=1e5+10;
int a[N];
map<int,int> mp;//存储每个质因子第一次出现的位置
int get(int i){int pos=1e9;int t=a[i];for(int j=2;j*j<=t;j++){if(t%j==0){if(!mp[j]) mp[j]=i;else pos=min(pos,mp[j]);while(t%j==0) t/=j;}}if(t>1){if(!mp[t]) mp[t]=i;else pos=min(pos,mp[t]);}return pos;
}
signed main(){int n;cin>>n;for(int i=1;i<=n;i++){cin>>a[i];}int x=1e9,y=1e9;for(int i=1;i<=n;i++){int pos=get(i);if(pos!=1e9){if(pos<x||pos==x&&i<y){x=pos,y=i;}}}cout<<x<<' '<<y<<endl;return 0;
}

子树的大小

题目描述

给定一棵包含 n 个结点的完全 m 叉树,结点按从根到叶、从左到右的顺序依次编号。

例如下图是一个拥有 11 个结点的完全 3 叉树。

蓝桥杯2023年第十四届省赛真题-子树的大小

你需要求出第 k 个结点对应的子树拥有的结点数量。

输入格式

输入包含多组询问。

输入的第一行包含一个整数 T ,表示询问次数。

接下来 T 行,每行包含三个整数 n, m, k 表示一组询问。

输出格式

输出 T 行,每行包含一个整数表示对应询问的答案。

样例输入

3
1 2 1
11 3 4
74 5 3

样例输出

1
2
24

提示

对于 40% 的评测用例,T ≤ 50,n ≤ 10^6,m ≤ 16 ;

对于所有评测用例,1 ≤ T ≤ 10^5,1 ≤ k ≤ n ≤ 10^9,2 ≤ m ≤ 10^9 。

#include<iostream>
#include<vector>
#include<map>
#define int long long
using namespace std;
const int N=1e5+10;
int a[N];
signed main(){int T;scanf("%lld",&T);while(T--){int n,m,k;scanf("%lld%lld%lld",&n,&m,&k);bool flag=1;int cnt=1;int l=k,r=k;while(flag){//迭代计算k节点的子节点个数l=(l-1)*m+2;//最左边子节点的编号r=r*m+1;//最右边子节点的编号if(r>n){r=n;flag=0;}if(l<=n) cnt+=r-l+1;}printf("%lld\n",cnt);}return 0;
}

这篇关于蓝桥杯第十四届C++C组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884073

相关文章

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么