Codeforces Contest 1108 problem F MST Unification —— 构建唯一最小生成树

本文主要是介绍Codeforces Contest 1108 problem F MST Unification —— 构建唯一最小生成树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

You are given an undirected weighted connected graph with n vertices and m edges without loops and multiple edges.

The i-th edge is ei=(ui,vi,wi); the distance between vertices ui and vi along the edge ei is wi (1≤wi). The graph is connected, i. e. for any pair of vertices, there is at least one path between them consisting only of edges of the given graph.

A minimum spanning tree (MST) in case of positive weights is a subset of the edges of a connected weighted undirected graph that connects all the vertices together and has minimum total cost among all such subsets (total cost is the sum of costs of chosen edges).

You can modify the given graph. The only operation you can perform is the following: increase the weight of some edge by 1. You can increase the weight of each edge multiple (possibly, zero) times.

Suppose that the initial MST cost is k. Your problem is to increase weights of some edges with minimum possible number of operations in such a way that the cost of MST in the obtained graph remains k, but MST is unique (it means that there is only one way to choose MST in the obtained graph).

Your problem is to calculate the minimum number of operations required to do it.

Input
The first line of the input contains two integers n and m (1≤n≤2⋅105,n−1≤m≤2⋅105) — the number of vertices and the number of edges in the initial graph.

The next m lines contain three integers each. The i-th line contains the description of the i-th edge ei. It is denoted by three integers ui,vi and wi (1≤ui,vi≤n,ui≠vi,1≤w≤109), where ui and vi are vertices connected by the i-th edge and wi is the weight of this edge.

It is guaranteed that the given graph doesn’t contain loops and multiple edges (i.e. for each i from 1 to m ui≠vi and for each unordered pair of vertices (u,v) there is at most one edge connecting this pair of vertices). It is also guaranteed that the given graph is connected.

Output
Print one integer — the minimum number of operations to unify MST of the initial graph without changing the cost of MST.

Examples
inputCopy
8 10
1 2 1
2 3 2
2 4 5
1 4 2
6 3 3
6 1 3
3 5 2
3 7 1
4 8 1
6 2 4
outputCopy
1
inputCopy
4 3
2 1 3
4 3 4
2 4 1
outputCopy
0
inputCopy
3 3
1 2 1
2 3 2
1 3 3
outputCopy
0
inputCopy
3 3
1 2 1
2 3 3
1 3 3
outputCopy
1
inputCopy
1 0
outputCopy
0
inputCopy
5 6
1 2 2
2 3 1
4 5 3
2 4 2
1 4 2
1 5 3
outputCopy
2

题意:

给你一张图,让你增加某些边的值使得最小生成树唯一,输出增加的最小次数。

题解:

如果两个块合并的话,那么肯定是使得这两个块之间的边最小值只有一个,其他的最小值都改变,那么我们排序后每次只对相同的边长的边进行操作,如果这个边的两个点已经在一个并查集内,那么就说明这个边不需要考虑,因为有比他小的边了,之后在插的时候,如果这两个点不在同一个并查集内,就说明这两个块之前没有边相连,–,剩下的就是重复的边了。

#include<bits/stdc++.h>
using namespace std;
#define pa pair<int,int>
const int N=2e5+5;
struct node
{int x,y,w;bool operator< (const node& a)const{return w<a.w;}
}e[N];
int fa[N];
int finds(int x)
{return x==fa[x]?fa[x]:fa[x]=finds(fa[x]);
}
int main()
{//memset(head,-1,sizeof(head));int n,m;scanf("%d%d",&n,&m);for(int i=1;i<=n;i++)fa[i]=i;int x,y,w;for(int i=1;i<=m;i++)scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].w);sort(e+1,e+1+m);int ans=0,ne=0,fin=1;for(int i=1;i<=m;){while(fin<=m&&e[fin].w==e[i].w)fin++;int cnt=fin-i;for(int j=i;j<fin;j++)if(finds(e[j].x)==finds(e[j].y))cnt--;for(int j=i;j<fin;j++){if(finds(e[j].x)!=finds(e[j].y))cnt--;fa[finds(e[j].y)]=finds(e[j].x);}i=fin;ans+=cnt;}printf("%d\n",ans);return 0;
}

这篇关于Codeforces Contest 1108 problem F MST Unification —— 构建唯一最小生成树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/881238

相关文章

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

使用Python和python-pptx构建Markdown到PowerPoint转换器

《使用Python和python-pptx构建Markdown到PowerPoint转换器》在这篇博客中,我们将深入分析一个使用Python开发的应用程序,该程序可以将Markdown文件转换为Pow... 目录引言应用概述代码结构与分析1. 类定义与初始化2. 事件处理3. Markdown 处理4. 转

SpringBoot项目使用MDC给日志增加唯一标识的实现步骤

《SpringBoot项目使用MDC给日志增加唯一标识的实现步骤》本文介绍了如何在SpringBoot项目中使用MDC(MappedDiagnosticContext)为日志增加唯一标识,以便于日... 目录【Java】SpringBoot项目使用MDC给日志增加唯一标识,方便日志追踪1.日志效果2.实现步

C/C++随机数生成的五种方法

《C/C++随机数生成的五种方法》C++作为一种古老的编程语言,其随机数生成的方法已经经历了多次的变革,早期的C++版本使用的是rand()函数和RAND_MAX常量,这种方法虽然简单,但并不总是提供... 目录C/C++ 随机数生成方法1. 使用 rand() 和 srand()2. 使用 <random

Flask 验证码自动生成的实现示例

《Flask验证码自动生成的实现示例》本文主要介绍了Flask验证码自动生成的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 目录生成图片以及结果处理验证码蓝图html页面展示想必验证码大家都有所了解,但是可以自己定义图片验证码

Java使用Mail构建邮件功能的完整指南

《Java使用Mail构建邮件功能的完整指南》JavaMailAPI是一个功能强大的工具,它可以帮助开发者轻松实现邮件的发送与接收功能,本文将介绍如何使用JavaMail发送和接收邮件,希望对大家有所... 目录1、简述2、主要特点3、发送样例3.1 发送纯文本邮件3.2 发送 html 邮件3.3 发送带

Python如何在Word中生成多种不同类型的图表

《Python如何在Word中生成多种不同类型的图表》Word文档中插入图表不仅能直观呈现数据,还能提升文档的可读性和专业性,本文将介绍如何使用Python在Word文档中创建和自定义各种图表,需要的... 目录在Word中创建柱形图在Word中创建条形图在Word中创建折线图在Word中创建饼图在Word