OpenTSDB原理系列:数据表设计

2024-04-06 19:08

本文主要是介绍OpenTSDB原理系列:数据表设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇文章《OpenTSDB原理系列:元数据模型》讲到了OpenTSDB的基础概念,以及元数据模型,这篇文章介绍OpenTSDB的HBase数据表设计。OpenTSDB共涉及两种类型的数据:Metrics数据以及Annotation(注释)数据,在将这些数据存到HBase表中时,针对RowKey, Qualifier以及Value信息都做了特殊设计,从而使得存储更加高效。

Metrics RowKey设计

metrics数据的HBase RowKey中包含主要组成部分为盐值(Salt)、metrics名称、时间戳、tagKey、tagValue等部分。上篇文章已经讲到,为了统一各个值的长度以及节省空间,对metrics名称、tagKey和tagValue分配了UID信息。所以,在HBase RowKey中实际写入的metrics UID、tagKey UID和tagValue UID。

HBase RowKey的数据模型如下图所示:

  • SALT:建议开启SALT功能,可以有效提高性能。SALT数据的长度是变长的:如果SALT的值值少于256,那么只用一个字节表示即可;如果需要设置更大的SALT值,也会相应地占用更多的空间。
  • Metric ID:metrics名经过编码后,每个Metric ID的长度为三个字节。
  • Timestamp:这里是整点小时时间戳。
  • tagKey UID & tagValue UID:tagKey和tagValue经过编码后,每个tagKey UID和tagValue UID的长度都为三个字节。tagKey UID和tagValue UID必须成对出现,最少必须存在1对,最多存在8对。

Metrics Qualifier设计

Qualifier用于保存一个或多个DataPoint中的时间戳、数据类型、数据长度等信息

由于时间戳中的小时级别的信息已经保存在RowKey中了,所以Qualifier只需要保存一个小时中具体某秒或某毫秒的信息即可,这样可以减少数据占用的空间。

一个小时中的某一秒(少于3600)最多需要2个字节即可表示,而某一毫秒(少于3600000)最多需要4个字节才可以表示。为了节省空间,OpenTSDB没有使用统一的长度,而是对特定的类型采用特性的编码方法。Qualifer的数据模型主要分为如下三种情况:秒、毫秒、秒和毫秒混合。

秒类型

当OpenTSDB接收到一个新的DataPoint的时候,如果请求中的时间戳是秒,那么就会插入一个如下模型的数据。

判断请求中的时间戳为秒或毫秒的方法是基于时间戳数值的大小,如果时间戳的值的超过无符号整数的最大值(即4个字节的长度),那么该时间戳是毫秒,否则为秒。

  • Value长度:Value的实际长度是Qualifier的最后3个bit的值加1,即(qualifier & 0x07) + 1。表示该时间戳对应的值的字节数。所以,值的字节数的范围是1到8个字节。
  • Value类型:Value的类型由Qualifier的倒数第4个bit表示,即(qualifier & 0x08)。如果值为1,表示Value的类型为float;如果值为0,表示Value的类型为long。
  • 时间戳:时间戳的值由Qualifier的第1到第12个bit表示,即(qualifier & 0xFFF0) >>>4。由于秒级的时间戳最大值不会大于3600,所以qualifer的第1个bit肯定不会是1前4个bits肯定不是1111。

毫秒类型

当OpenTSDB接收到一个新的DataPoint的时候,如果请求中的时间戳是毫秒,那么就会插入一个如下模型的数据。

  • Value长度:与秒类型相同。
  • Value类型:与秒类型相同。
  • 时间戳: 时间戳的值由Qualifier的第5到第26个bit表示,即(qualifier & 0x0FFFFFC0) >>>6。
  • 标志位:标志位由Qualifier的前4个bit表示。当该Qualifier表示毫秒级数据时,必须全为1,即(qualifier[0] & 0xF0) == 0xF0。
  • 第27到28个bit未使用。

混合类型

当同一小时的数据发生合并后,就会形成混合类型的Qualifier。

合并的方法很简单,就是按照时间戳顺序进行排序后,从小到大依次拼接秒类型和毫秒类型的Qualifier即可。

  • 秒类型和毫秒类型的数量没有限制,并且可以任意组合。
  • 不存在相同时间戳的数据,包括秒和毫秒的表示方式。
  • 遍历混合类型中的所有DataPoint的方法是:
    • 从左到右,先判断前4个bit是否为0xF
    • 如果是,则当前DataPoint是毫秒型的,读取4个字节形成一个毫秒型的DataPoint
    • 如果否,则当前DataPoint是秒型的,读取2个字节形成一个秒型的DataPoint
    • 以此迭代即可遍历所有的DataPoint

Metrics Value设计

HBase Value部分用于保存一个或多个DataPoint的具体某个时间戳对应的值

由于在Qualifier中已经保存了DataPoint Value的类型和DataPoint Value的长度,所以无论是秒级还是毫秒级的值,都可以用相同的表示方法,而混合类型就是多个DataPoint Value的拼接。

HBase Value按照长度可以分为如下几种类型:

单字节

当DataPoint Value为long型,且大于等于-128(Byte.MIN_VALUE),且少于或等于127(Byte.MAX_VALUE)的时候,使用1个字节存储。

两字节

当DataPoint Value为long型,且大于等于-32768(Short.MIN_VALUE),且少于或等于32767(Short.MAX_VALUE)的时候,使用2个字节存储。

四字节

当DataPoint Value为long型,且大于等于0x80000000(Integer.MIN_VALUE),且少于或等于0x7FFFFFFF(Integer.MAX_VALUE)的时候,使用4个字节存储。

八字节

当DataPoint Value为long型,且不是上面三种类型的时候,使用8个字节存储。

当DataPoint Value为float型的时候,使用8个字节表示。

多字节

按照时间戳的顺序,把多个Value拼接起来的数据模型如下:

  • 每个格子表示一个DataPoint Value的值,这个DataPoint Value的长度可能是1或2或4或8个字节。
  • DataPoint Value的顺序与Qualifier中时间戳的顺序一一对应。
  • 混合标志:如果最后1个字节为0x01,表示存在秒级类型和毫秒级类型混合的情况。

Annotation数据

Annotation用于描述某一个时间点发生的事件,Annotation的数据为字符串类型,这与数字类型的metrics数据并不同。

注意

  1. Annotation数据只支持秒级时间戳的数据。
  2. Annotation数据不会合并。

Annotation RowKey设计

RowKey的数据模型如下图:

Annotation-RowKey

  • SALT/ Timestamp/Metric UID/ tagKey UID /tagValue UID的意义与metrics RowKey中的意义相同。
  • 把[Metric UID/ tagKey UID /tagValue UID]部分统称为TSUID。实际上,读写注释数据的时候,需要指定的是TSUID,而不是像metrics数据中那样分开指定的。

Annotation Qualifier设计

由于注释数据只支持秒级类型的数据,同时注释类型的数据不支持合并,所以Qualifier的设计相对metrics数据简单一些。Qualifier定义如下:

  • 与metrics数据的Qualifier相比,注释数据的HBase Qualifer的长度是3个字节。
  • 标志位:使用第1个字节表示,而且值必须为0x01。即(qualifier & 0xFF0000)>>>16 == 0x01。
  • 时间戳:使用第2到第3个字节表示。即时间戳的值为(qualifier & 0x00FFFF)。

Annotation Value设计

注释数据中的Value保存的是字符串类型的数据,整个HBase Value部分就是注释数据的值。

Append模式

当OpenTSDB启动APPEND模式后,每个插入的新DataPoint,都会以HBase的append的方式写入。

注意:

  1. 由于使用了HBase的append的接口,每次插入一个新数据,都需要对同一小时的数据都执行一次读取和插入的操作;另外多线程对同一小时的数据进行更新的时候,是不能并发的。这样就大大限制了数据写入的速度了,一般情况下不建议使用这种模式。
  2. append的数据其实就是合并过的数据了,所以不会参与OpenTSDB的Compaction流程。

Append模式RowKey设计

Append模式的RowKey设计与普通模式下写入的metrics数据的RowKey是相同的。

Append模式Qualifier设计

Append模式下,由于同1小时的数据中不存在多个Qualifier,所以只需要使用一个固定的Qualifier即可。

  • Append模式的Qualifier使用3个字节表示
  • 标志位: 由第1个字节表示,而且值必须为0x05。即(qualifier & 0xFF0000)>>>16 == 0x05
  • 固定部分:由第2到第3个字节表示,这部分的值固定为0x0000,因此,Append模式的Qualifier固定为0x050000

Append模式Value设计

Append模式下, Value部分既要保存时间戳,数值类型和数值长度,也要保存对应的数值。

Value的数据结构如下:

  • 上图每一个方块表示的Qualifier与Value的定义,与普通写入模式下的定义相同
  • 遍历Value中的所有DataPoint的方法是:
    • 从左到右,先判断前4个bit是否为0xF
    • 如果是,则当前DataPoint是毫秒型的读取4个字节形成一个毫秒型的Qualifier,从Qualifier中获得Value的长度,然后再读取对应长度的字节数
    • 如果否,则当前DataPoint是秒型的,读取2个字节形成一个秒型的Qualifier,从Qualifier中获得Value的长度,然后再读取对应长度的字节数;
    • 依此迭代即可遍历所有的DataPoint。

本文源自:NoSQL漫谈(nosqlnotes.com)

http://www.nosqlnotes.com/technotes/opentsdb-tabledesign/

这篇关于OpenTSDB原理系列:数据表设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/880597

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意