OpenTSDB原理系列:元数据模型

2024-04-06 19:08

本文主要是介绍OpenTSDB原理系列:元数据模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文作为介绍OpenTSDB原理系列文章的第一篇,主要介绍了时序数据以及OpenTSDB的一些基础概念,以及OpenTSDB中的元数据模型定义。

什么是时序数据?

Wiki中关于”时间序列(Time Series)“的定义:

时间序列(Time Series)是一组按照时间发生先后顺序进行排列的数据点序列,通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,1小时等)。

时间序列数据可被简称为时序数据

实时监控系统所收集的监控指标数据,通常就是时序数据 。时序数据具有如下特点:

  • 每一个时间序列通常为某一固定类型数值
  • 数据按一定的时间间隔持续产生,每条数据拥有自己的时间戳信息
  • 通常只会不断的写入新的数据,几乎不会有更新删除的场景
  • 在读取上,也往往倾向于读取最近写入的数据。

正是因为这些特点,通常使用专门的时序数据库来存储,因为这类数据库更能理解时序数据((TSDB))的特点,而且在读写上做一些针对性的优化。相信在在即将大范围普及的物联网(IoT)应用场景中,时序数据库(TSDB)会得到更加广泛的应用。

OpenTSDB

OpenTSDB是其中一种时序数据库实现,因为基于HBase生态构建而获得了广泛的关注。目前,华为云的CloudTable服务已经推出了OpenTSDB特性。

如下是源自OpenTSDB官方资料中的时序数据样例

sys.cpu.user host=webserver01 1356998400 50

sys.cpu.user host=webserver01,cpu=0 1356998400 1

sys.cpu.user host=webserver01,cpu=1 1356998400 0

sys.cpu.user host=webserver01,cpu=2 1356998400 2

sys.cpu.user host=webserver01,cpu=3 1356998400 0

…………

sys.cpu.user host=webserver01,cpu=63 1356998400 1

对于上面的任意一行数据,在OpenTSDB中称之为一个时间序列中的一个Data Point。以最后一行为例我们说明一下OpenTSDB中关于Data Point的每一部分组成定义如下:

构成信息名称
sys.cpu.usermetrics
hosttagKey
webserver01tagValue
cputagKey
63tagValue
1356998400timestamp
1value

可以看出来,每一个Data Point,都关联一个metrics名称,但可能关联多组<tagKey,tagValue>信息。而关于时间序列,事实上就是具有相同的metrics名称以及相同的<tagKey,tagValue>组信息的Data Points的集合。在存储这些Data Points的时候,大家也很容易可以想到,可以将这些metrics名称以及<tagKey,tagValue>信息进行特殊编码来优化存储,否则会带来极大的数据冗余。OpenTSDB中为每一个metrics名称,tagKey以及tagValue都定义了一个唯一的数字类型的标识码(UID)

UID设计

UID的全称为Unique Identifier。这些UID信息被保存在OpenTSDB的元数据表中,默认表名为”tsdb-uid”。

OpenTSDB分配UID时遵循如下规则:

  • metrics、tagKey和tagValue的UID分别独立分配
  • 每个metrics名称(tagKey/tagValue)的UID值都是唯一。不存在不同的metrics(tagKey/tagValue)使用相同的UID,也不存在同一个metrics(tagKey/tagValue)使用多个不同的UID
  • UID值的范围是0x000000到0xFFFFFF,即metrics(或tagKey、tagValue)最多只能存在16777216个不同的值。

元数据HBase表设计

为了从UID索引到metrics(或tagKey、tagValue),同时也要从metrics(或tagKey、tagValue)索引到UID,OpenTSDB同时保存这两种映射关系数据。

在元数据表中,把这两种数据分别保存到两个名为”id”与”name”的Column Family中,Column Family描述信息如下所示:

{NAME => ‘id’, BLOOMFILTER => ‘ROW’, COMPRESSION => ‘SNAPPY’}
{NAME =>’name’,BLOOMFILTER => ‘ROW’, COMPRESSION => ‘SNAPPY’, MIN_VERSIONS => ‘0’, BLOCKCACHE => ‘true’, BLOCKSIZE => ‘65536’, REPLICATION_SCOPE => ‘0’}

元数据模型

关于metrics名为”cpu.hum”,tagKey值为”host”,tagValue值分别为”189.120.205.26″、”189.120.205.27″的UID信息定义如下:

UID_DEFINITION

说明:

  1. RowKey为”0″的行中,分别保存了metrics、tagKey和tagValue的当前UID的最大值。当为新的metrics、tagKey和tagValue分配了新的UID后,会更新对应的最大值
  2. RowKey为”1″的行中,RowKey为UID,Qualifier为”name:metrics”的值对应metrics name,Qualifier为”name:tagk”的值中存放了tagKey,Qualifier为”name:tagv”的值中存放了tagValue
  3. RowKey为”2″的行中,RowKey为UID,Qualifier为”name:tagv”的值为tagValue,不存在metrics与tagKey信息。
  4. RowKey为”189.120.205.26″的行中,Qualifer为”id:tagv”的值为UID信息。表示当”189.120.205.26″为tagValue时,其UID为1
  5. RowKey为”189.120.205.27″的行中,Qualifer为”id:tagv”的值为UID信息。表示当”189.120.205.26″为tagValue时,其UID为2
  6. RowKey为”cpu.hum”的行中,Qualifer为”id:metrics”的值为UID信息。表示当cpu.hum为metrics时,其UID为1
  7. RowKey为”host”的行中,Qualifer为”id:tagk”的值为UID信息。表示当host为tagValue时,其UID为1

由于HBase的存储数据类型是Bytes,所以UID在存储时会被转换为3个字节长度的Bytes数组进行存储。

TSUID

对每一个Data Point,metrics、timestamp、tagKey和tagValue都是必要的构成元素。除timestamp外,metrics、tagKey和tagValue的UID就可组成一个TSUID,每一个TSUID关联一个时间序列,如下所示:

<metrics_UID><tagKey1_UID><tagValue1_UID>[…<tagKeyN_UID><tagValueN_UID>]

在上一章节的例子中,就涉及两个TSUID,分别是:

TSUID

 

转:http://www.nosqlnotes.com/technotes/opentsdb-schema/

这篇关于OpenTSDB原理系列:元数据模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/880596

相关文章

Java线程池核心参数原理及使用指南

《Java线程池核心参数原理及使用指南》本文详细介绍了Java线程池的基本概念、核心类、核心参数、工作原理、常见类型以及最佳实践,通过理解每个参数的含义和工作原理,可以更好地配置线程池,提高系统性能,... 目录一、线程池概述1.1 什么是线程池1.2 线程池的优势二、线程池核心类三、ThreadPoolE

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

Spring IOC核心原理详解与运用实战教程

《SpringIOC核心原理详解与运用实战教程》本文详细解析了SpringIOC容器的核心原理,包括BeanFactory体系、依赖注入机制、循环依赖解决和三级缓存机制,同时,介绍了SpringBo... 目录1. Spring IOC核心原理深度解析1.1 BeanFactory体系与内部结构1.1.1

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node