OpenTSDB原理系列:元数据模型

2024-04-06 19:08

本文主要是介绍OpenTSDB原理系列:元数据模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文作为介绍OpenTSDB原理系列文章的第一篇,主要介绍了时序数据以及OpenTSDB的一些基础概念,以及OpenTSDB中的元数据模型定义。

什么是时序数据?

Wiki中关于”时间序列(Time Series)“的定义:

时间序列(Time Series)是一组按照时间发生先后顺序进行排列的数据点序列,通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,1小时等)。

时间序列数据可被简称为时序数据

实时监控系统所收集的监控指标数据,通常就是时序数据 。时序数据具有如下特点:

  • 每一个时间序列通常为某一固定类型数值
  • 数据按一定的时间间隔持续产生,每条数据拥有自己的时间戳信息
  • 通常只会不断的写入新的数据,几乎不会有更新删除的场景
  • 在读取上,也往往倾向于读取最近写入的数据。

正是因为这些特点,通常使用专门的时序数据库来存储,因为这类数据库更能理解时序数据((TSDB))的特点,而且在读写上做一些针对性的优化。相信在在即将大范围普及的物联网(IoT)应用场景中,时序数据库(TSDB)会得到更加广泛的应用。

OpenTSDB

OpenTSDB是其中一种时序数据库实现,因为基于HBase生态构建而获得了广泛的关注。目前,华为云的CloudTable服务已经推出了OpenTSDB特性。

如下是源自OpenTSDB官方资料中的时序数据样例

sys.cpu.user host=webserver01 1356998400 50

sys.cpu.user host=webserver01,cpu=0 1356998400 1

sys.cpu.user host=webserver01,cpu=1 1356998400 0

sys.cpu.user host=webserver01,cpu=2 1356998400 2

sys.cpu.user host=webserver01,cpu=3 1356998400 0

…………

sys.cpu.user host=webserver01,cpu=63 1356998400 1

对于上面的任意一行数据,在OpenTSDB中称之为一个时间序列中的一个Data Point。以最后一行为例我们说明一下OpenTSDB中关于Data Point的每一部分组成定义如下:

构成信息名称
sys.cpu.usermetrics
hosttagKey
webserver01tagValue
cputagKey
63tagValue
1356998400timestamp
1value

可以看出来,每一个Data Point,都关联一个metrics名称,但可能关联多组<tagKey,tagValue>信息。而关于时间序列,事实上就是具有相同的metrics名称以及相同的<tagKey,tagValue>组信息的Data Points的集合。在存储这些Data Points的时候,大家也很容易可以想到,可以将这些metrics名称以及<tagKey,tagValue>信息进行特殊编码来优化存储,否则会带来极大的数据冗余。OpenTSDB中为每一个metrics名称,tagKey以及tagValue都定义了一个唯一的数字类型的标识码(UID)

UID设计

UID的全称为Unique Identifier。这些UID信息被保存在OpenTSDB的元数据表中,默认表名为”tsdb-uid”。

OpenTSDB分配UID时遵循如下规则:

  • metrics、tagKey和tagValue的UID分别独立分配
  • 每个metrics名称(tagKey/tagValue)的UID值都是唯一。不存在不同的metrics(tagKey/tagValue)使用相同的UID,也不存在同一个metrics(tagKey/tagValue)使用多个不同的UID
  • UID值的范围是0x000000到0xFFFFFF,即metrics(或tagKey、tagValue)最多只能存在16777216个不同的值。

元数据HBase表设计

为了从UID索引到metrics(或tagKey、tagValue),同时也要从metrics(或tagKey、tagValue)索引到UID,OpenTSDB同时保存这两种映射关系数据。

在元数据表中,把这两种数据分别保存到两个名为”id”与”name”的Column Family中,Column Family描述信息如下所示:

{NAME => ‘id’, BLOOMFILTER => ‘ROW’, COMPRESSION => ‘SNAPPY’}
{NAME =>’name’,BLOOMFILTER => ‘ROW’, COMPRESSION => ‘SNAPPY’, MIN_VERSIONS => ‘0’, BLOCKCACHE => ‘true’, BLOCKSIZE => ‘65536’, REPLICATION_SCOPE => ‘0’}

元数据模型

关于metrics名为”cpu.hum”,tagKey值为”host”,tagValue值分别为”189.120.205.26″、”189.120.205.27″的UID信息定义如下:

UID_DEFINITION

说明:

  1. RowKey为”0″的行中,分别保存了metrics、tagKey和tagValue的当前UID的最大值。当为新的metrics、tagKey和tagValue分配了新的UID后,会更新对应的最大值
  2. RowKey为”1″的行中,RowKey为UID,Qualifier为”name:metrics”的值对应metrics name,Qualifier为”name:tagk”的值中存放了tagKey,Qualifier为”name:tagv”的值中存放了tagValue
  3. RowKey为”2″的行中,RowKey为UID,Qualifier为”name:tagv”的值为tagValue,不存在metrics与tagKey信息。
  4. RowKey为”189.120.205.26″的行中,Qualifer为”id:tagv”的值为UID信息。表示当”189.120.205.26″为tagValue时,其UID为1
  5. RowKey为”189.120.205.27″的行中,Qualifer为”id:tagv”的值为UID信息。表示当”189.120.205.26″为tagValue时,其UID为2
  6. RowKey为”cpu.hum”的行中,Qualifer为”id:metrics”的值为UID信息。表示当cpu.hum为metrics时,其UID为1
  7. RowKey为”host”的行中,Qualifer为”id:tagk”的值为UID信息。表示当host为tagValue时,其UID为1

由于HBase的存储数据类型是Bytes,所以UID在存储时会被转换为3个字节长度的Bytes数组进行存储。

TSUID

对每一个Data Point,metrics、timestamp、tagKey和tagValue都是必要的构成元素。除timestamp外,metrics、tagKey和tagValue的UID就可组成一个TSUID,每一个TSUID关联一个时间序列,如下所示:

<metrics_UID><tagKey1_UID><tagValue1_UID>[…<tagKeyN_UID><tagValueN_UID>]

在上一章节的例子中,就涉及两个TSUID,分别是:

TSUID

 

转:http://www.nosqlnotes.com/technotes/opentsdb-schema/

这篇关于OpenTSDB原理系列:元数据模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/880596

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4

MySQL中Next-Key Lock底层原理实现

《MySQL中Next-KeyLock底层原理实现》Next-KeyLock是MySQLInnoDB存储引擎中的一种锁机制,结合记录锁和间隙锁,用于高效并发控制并避免幻读,本文主要介绍了MySQL中... 目录一、Next-Key Lock 的定义与作用二、底层原理三、源代码解析四、总结Next-Key L

Spring Cloud Hystrix原理与注意事项小结

《SpringCloudHystrix原理与注意事项小结》本文介绍了Hystrix的基本概念、工作原理以及其在实际开发中的应用方式,通过对Hystrix的深入学习,开发者可以在分布式系统中实现精细... 目录一、Spring Cloud Hystrix概述和设计目标(一)Spring Cloud Hystr

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr