Documentation\input\input-programming.txt(输入子系统驱动编写)

本文主要是介绍Documentation\input\input-programming.txt(输入子系统驱动编写),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


Programming input drivers其实说是翻译,都有点名不副实,基本都是原文,但这篇帮助文档真的很不错。

1. Creating an input device driver  编写一个输入设备驱动
1.0 The simplest example
Here comes a very simple example of an input device driver. The device has
just one button and the button is accessible at i/o port BUTTON_PORT. When

pressed or released a BUTTON_IRQ happens. 这个输入设备只有一个按键,按键被连接到一条中断线上,当按键被按下时,将产生一个中断,内核将检测到这个中断,并对其进行处理。

The driver could look like:


#include <linux/input.h>
#include <linux/module.h>
#include <linux/init.h>

#include <asm/irq.h>
#include <asm/io.h>

static struct input_dev *button_dev;


static irqreturn_t button_interrupt(int irq, void *dummy)
{
input_report_key(button_dev, BTN_0, inb(BUTTON_PORT) & 1);
input_sync(button_dev);
return IRQ_HANDLED;
}

static int __init button_init(void)
{
int error;


if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) {
                printk(KERN_ERR "button.c: Can't allocate irq %d\n", button_irq);
                return -EBUSY;
        }


button_dev = input_allocate_device();
if (!button_dev) {
printk(KERN_ERR "button.c: Not enough memory\n");
error = -ENOMEM;
goto err_free_irq;
}


button_dev->evbit[0] = BIT_MASK(EV_KEY);
button_dev->keybit[BIT_WORD(BTN_0)] = BIT_MASK(BTN_0);


error = input_register_device(button_dev);
if (error) {
printk(KERN_ERR "button.c: Failed to register device\n");
goto err_free_dev;
}


return 0;


 err_free_dev:
input_free_device(button_dev);
 err_free_irq:
free_irq(BUTTON_IRQ, button_interrupt);
return error;
}


static void __exit button_exit(void)
{
        input_unregister_device(button_dev);
free_irq(BUTTON_IRQ, button_interrupt);
}


module_init(button_init);
module_exit(button_exit);


1.1 What the example does
~~~~~~~~~~~~~~~~~~~~~~~~~

First it has to include the <linux/input.h> file, which interfaces to the
input subsystem.
This provides all the definitions needed.

In the _init function, which is called either upon module load or when
booting the kernel, it grabs the required resources (it should also check
for the presence of the device).


Then it allocates a new input device structure with input_allocate_device()
and sets up input bitfields. This way the device driver tells the other
parts of the input systems what it is - what events can be generated or
accepted by this input device.
Our example device can only generate EV_KEY
type events, and from those only BTN_0 event code. Thus we only set these
two bits. We could have used


set_bit(EV_KEY, button_dev.evbit);
set_bit(BTN_0, button_dev.keybit);

as well, but with more than single bits the first approach tends to be
shorter.


Then the example driver registers the input device structure by calling
input_register_device(&button_dev);
This adds the button_dev structure to linked lists of the input driver and
calls device handler modules _connect functions to tell them a new input
device has appeared.
input_register_device() may sleep and therefore must
not be called from an interrupt or with a spinlock held.


While in use, the only used function of the driver is
button_interrupt()
which upon every interrupt from the button checks its state and reports it

via the


input_report_key()
call to the input system. There is no need to check whether the interrupt
routine isn't reporting two same value events (press, press for example) to
the input system, because the input_report_* functions check that
themselves.


Then there is the

input_sync()

call to tell those who receive the events that we've sent a complete report.
This doesn't seem important in the one button case, but is quite important
for for example mouse movement, where you don't want the X and Y values
to be interpreted separately, because that'd result in a different movement.


1.2 dev->open() and dev->close()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In case the driver has to repeatedly poll the device, because it doesn't
have an interrupt coming from it and the polling is too expensive to be done
all the time, or if the device uses a valuable resource (eg. interrupt), it
can use the open and close callback to know when it can stop polling or
release the interrupt and when it must resume polling or grab the interrupt
again. To do that, we would add this to our example driver:

static int button_open(struct input_dev *dev)
{
if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) {
                printk(KERN_ERR "button.c: Can't allocate irq %d\n", button_irq);
                return -EBUSY;
        }


        return 0;
}
static void button_close(struct input_dev *dev)
{
        free_irq(IRQ_AMIGA_VERTB, button_interrupt);
}


static int __init button_init(void)
{
...
button_dev->open = button_open;
button_dev->close = button_close;
...
}

Note that input core keeps track of number of users for the device and
makes sure that dev->open() is called only when the first user connects
to the device and that dev->close() is called when the very last user
disconnects. Calls to both callbacks are serialized.

The open() callback should return a 0 in case of success or any nonzero value
in case of failure. The close() callback (which is void) must always succeed.


1.3 Basic event types
~~~~~~~~~~~~~~~~~~~~~
The most simple event type is EV_KEY, which is used for keys and buttons.
It's reported to the input system via:


input_report_key(struct input_dev *dev, int code, int value)

See linux/input.h for the allowable values of code (from 0 to KEY_MAX).
Value is interpreted as a truth value, ie any nonzero value means key
pressed, zero value means key released.
The input code generates events only
in case the value is different from before.


In addition to EV_KEY, there are two more basic event types: EV_REL and
EV_ABS. They are used for relative and absolute values supplied by the
device.
A relative value may be for example a mouse movement in the X axis.
The mouse reports it as a relative difference from the last position,
because it doesn't have any absolute coordinate system to work in. Absolute
events are namely for joysticks and digitizers - devices that do work in an
absolute coordinate systems.


Having the device report EV_REL buttons is as simple as with EV_KEY, simply  相对坐标
set the corresponding bits and call the

input_report_rel(struct input_dev *dev, int code, int value)


function. Events are generated only for nonzero value.


However EV_ABS requires a little special care. Before calling   绝对坐标有关
input_register_device, you have to fill additional fields in the input_dev
struct for each absolute axis your device has. If our button device had also
the ABS_X axis:


button_dev.absmin[ABS_X] = 0;
button_dev.absmax[ABS_X] = 255;
button_dev.absfuzz[ABS_X] = 4;
button_dev.absflat[ABS_X] = 8;


Or, you can just say:
input_set_abs_params(button_dev, ABS_X, 0, 255, 4, 8);


This setting would be appropriate for a joystick X axis, with the minimum of
0, maximum of 255 (which the joystick *must* be able to reach, no problem if
it sometimes reports more, but it must be able to always reach the min and
max values), with noise in the data up to +- 4, and with a center flat
position of size 8.


If you don't need absfuzz and absflat, you can set them to zero, which mean
that the thing is precise and always returns to exactly the center position
(if it has any).


1.4 BITS_TO_LONGS(), BIT_WORD(), BIT_MASK()
~~~~~~~~~~~~~~~~~~~~~~~~~~

These three macros from bitops.h help some bitfield computations:

BITS_TO_LONGS(x) - returns the length of a bitfield array in longs for
  x bits
BIT_WORD(x) - returns the index in the array in longs for bit x
BIT_MASK(x) - returns the index in a long for bit x


1.5 The id* and name fields
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The dev->name should be set before registering the input device by the input
device driver. It's a string like 'Generic button device' containing a
user friendly name of the device.


The id* fields contain the bus ID (PCI, USB, ...), vendor ID and device ID
of the device. The bus IDs are defined in input.h. The vendor and device ids
are defined in pci_ids.h, usb_ids.h and similar include files. These fields
should be set by the input device driver before registering it.


The idtype field can be used for specific information for the input device
driver.


The id and name fields can be passed to userland via the evdev interface.


1.6 The keycode, keycodemax, keycodesize fields
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
These three fields should be used by input devices that have dense keymaps.
The keycode is an array used to map from scancodes to input system keycodes.
The keycode max should contain the size of the array and keycodesize the
size of each entry in it (in bytes).


Userspace can query and alter current scancode to keycode mappings using
EVIOCGKEYCODE and EVIOCSKEYCODE ioctls on corresponding evdev interface.
When a device has all 3 aforementioned fields filled in, the driver may
rely on kernel's default implementation of setting and querying keycode
mappings.


1.7 dev->getkeycode() and dev->setkeycode()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
getkeycode() and setkeycode() callbacks allow drivers to override default
keycode/keycodesize/keycodemax mapping mechanism provided by input core
and implement sparse keycode maps.


1.8 Key autorepeat
~~~~~~~~~~~~~~~~~~

... is simple. It is handled by the input.c module. Hardware autorepeat is
not used, because it's not present in many devices and even where it is
present, it is broken sometimes (at keyboards: Toshiba notebooks). To enable
autorepeat for your device, just set EV_REP in dev->evbit.
All will be
handled by the input system.


1.9 Other event types, handling output events
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


The other event types up to now are:


EV_LED - used for the keyboard LEDs.
EV_SND - used for keyboard beeps.


They are very similar to for example key events, but they go in the other
direction - from the system to the input device driver.
If your input device
driver can handle these events, it has to set the respective bits in evbit,
*and* also the callback routine:


button_dev->event = button_event;

int button_event(struct input_dev *dev, unsigned int type, unsigned int code, int value);
{
if (type == EV_SND && code == SND_BELL) {
outb(value, BUTTON_BELL);
return 0;
}
return -1;
}


This callback routine can be called from an interrupt or a BH (although that

isn't a rule), and thus must not sleep, and must not take too long to finish.




这篇关于Documentation\input\input-programming.txt(输入子系统驱动编写)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/879051

相关文章

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

使用PyQt5编写一个简单的取色器

《使用PyQt5编写一个简单的取色器》:本文主要介绍PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16进制颜色编码,一款跟随鼠标刷新图像的RGB和16... 目录取色器1取色器2PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16

使用Java编写一个文件批量重命名工具

《使用Java编写一个文件批量重命名工具》这篇文章主要为大家详细介绍了如何使用Java编写一个文件批量重命名工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录背景处理1. 文件夹检查与遍历2. 批量重命名3. 输出配置代码片段完整代码背景在开发移动应用时,UI设计通常会提供不

Python按条件批量删除TXT文件行工具

《Python按条件批量删除TXT文件行工具》这篇文章主要为大家详细介绍了Python如何实现按条件批量删除TXT文件中行的工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.简介2.运行效果3.相关源码1.简介一个由python编写android的可根据TXT文件按条件批

【测试】输入正确用户名和密码,点击登录没有响应的可能性原因

目录 一、前端问题 1. 界面交互问题 2. 输入数据校验问题 二、网络问题 1. 网络连接中断 2. 代理设置问题 三、后端问题 1. 服务器故障 2. 数据库问题 3. 权限问题: 四、其他问题 1. 缓存问题 2. 第三方服务问题 3. 配置问题 一、前端问题 1. 界面交互问题 登录按钮的点击事件未正确绑定,导致点击后无法触发登录操作。 页面可能存在

Linux_kernel驱动开发11

一、改回nfs方式挂载根文件系统         在产品将要上线之前,需要制作不同类型格式的根文件系统         在产品研发阶段,我们还是需要使用nfs的方式挂载根文件系统         优点:可以直接在上位机中修改文件系统内容,延长EMMC的寿命         【1】重启上位机nfs服务         sudo service nfs-kernel-server resta

如何编写Linux PCIe设备驱动器 之二

如何编写Linux PCIe设备驱动器 之二 功能(capability)集功能(capability)APIs通过pci_bus_read_config完成功能存取功能APIs参数pos常量值PCI功能结构 PCI功能IDMSI功能电源功率管理功能 功能(capability)集 功能(capability)APIs int pcie_capability_read_wo

解决Office Word不能切换中文输入

我们在使用WORD的时可能会经常碰到WORD中无法输入中文的情况。因为,虽然我们安装了搜狗输入法,但是到我们在WORD中使用搜狗的输入法的切换中英文的按键的时候会发现根本没有效果,无法将输入法切换成中文的。下面我就介绍一下如何在WORD中把搜狗输入法切换到中文。

当你输入一个网址后都发生什么

原文:http://igoro.com/archive/what-really-happens-when-you-navigate-to-a-url/  作为一个软件开发者,你一定会对网络应用如何工作有一个完整的层次化的认知,同样这里也包括这些应用所用到的技术:像浏览器,HTTP,HTML,网络服务器,需求处理等等。 本文将更深入的研究当你输入一个网址的时候,后台到底发生了一件件什么样的事~

Python脚本:TXT文档行数统计

count = 0 #计数变量file_dirs = input('请输入您要统计的文件根路径:')filename = open(file_dirs,'r') #以只读方式打开文件file_contents = filename.read() #读取文档内容到file_contentsfor file_content in file_contents: