Documentation\input\input-programming.txt(输入子系统驱动编写)

本文主要是介绍Documentation\input\input-programming.txt(输入子系统驱动编写),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


Programming input drivers其实说是翻译,都有点名不副实,基本都是原文,但这篇帮助文档真的很不错。

1. Creating an input device driver  编写一个输入设备驱动
1.0 The simplest example
Here comes a very simple example of an input device driver. The device has
just one button and the button is accessible at i/o port BUTTON_PORT. When

pressed or released a BUTTON_IRQ happens. 这个输入设备只有一个按键,按键被连接到一条中断线上,当按键被按下时,将产生一个中断,内核将检测到这个中断,并对其进行处理。

The driver could look like:


#include <linux/input.h>
#include <linux/module.h>
#include <linux/init.h>

#include <asm/irq.h>
#include <asm/io.h>

static struct input_dev *button_dev;


static irqreturn_t button_interrupt(int irq, void *dummy)
{
input_report_key(button_dev, BTN_0, inb(BUTTON_PORT) & 1);
input_sync(button_dev);
return IRQ_HANDLED;
}

static int __init button_init(void)
{
int error;


if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) {
                printk(KERN_ERR "button.c: Can't allocate irq %d\n", button_irq);
                return -EBUSY;
        }


button_dev = input_allocate_device();
if (!button_dev) {
printk(KERN_ERR "button.c: Not enough memory\n");
error = -ENOMEM;
goto err_free_irq;
}


button_dev->evbit[0] = BIT_MASK(EV_KEY);
button_dev->keybit[BIT_WORD(BTN_0)] = BIT_MASK(BTN_0);


error = input_register_device(button_dev);
if (error) {
printk(KERN_ERR "button.c: Failed to register device\n");
goto err_free_dev;
}


return 0;


 err_free_dev:
input_free_device(button_dev);
 err_free_irq:
free_irq(BUTTON_IRQ, button_interrupt);
return error;
}


static void __exit button_exit(void)
{
        input_unregister_device(button_dev);
free_irq(BUTTON_IRQ, button_interrupt);
}


module_init(button_init);
module_exit(button_exit);


1.1 What the example does
~~~~~~~~~~~~~~~~~~~~~~~~~

First it has to include the <linux/input.h> file, which interfaces to the
input subsystem.
This provides all the definitions needed.

In the _init function, which is called either upon module load or when
booting the kernel, it grabs the required resources (it should also check
for the presence of the device).


Then it allocates a new input device structure with input_allocate_device()
and sets up input bitfields. This way the device driver tells the other
parts of the input systems what it is - what events can be generated or
accepted by this input device.
Our example device can only generate EV_KEY
type events, and from those only BTN_0 event code. Thus we only set these
two bits. We could have used


set_bit(EV_KEY, button_dev.evbit);
set_bit(BTN_0, button_dev.keybit);

as well, but with more than single bits the first approach tends to be
shorter.


Then the example driver registers the input device structure by calling
input_register_device(&button_dev);
This adds the button_dev structure to linked lists of the input driver and
calls device handler modules _connect functions to tell them a new input
device has appeared.
input_register_device() may sleep and therefore must
not be called from an interrupt or with a spinlock held.


While in use, the only used function of the driver is
button_interrupt()
which upon every interrupt from the button checks its state and reports it

via the


input_report_key()
call to the input system. There is no need to check whether the interrupt
routine isn't reporting two same value events (press, press for example) to
the input system, because the input_report_* functions check that
themselves.


Then there is the

input_sync()

call to tell those who receive the events that we've sent a complete report.
This doesn't seem important in the one button case, but is quite important
for for example mouse movement, where you don't want the X and Y values
to be interpreted separately, because that'd result in a different movement.


1.2 dev->open() and dev->close()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In case the driver has to repeatedly poll the device, because it doesn't
have an interrupt coming from it and the polling is too expensive to be done
all the time, or if the device uses a valuable resource (eg. interrupt), it
can use the open and close callback to know when it can stop polling or
release the interrupt and when it must resume polling or grab the interrupt
again. To do that, we would add this to our example driver:

static int button_open(struct input_dev *dev)
{
if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) {
                printk(KERN_ERR "button.c: Can't allocate irq %d\n", button_irq);
                return -EBUSY;
        }


        return 0;
}
static void button_close(struct input_dev *dev)
{
        free_irq(IRQ_AMIGA_VERTB, button_interrupt);
}


static int __init button_init(void)
{
...
button_dev->open = button_open;
button_dev->close = button_close;
...
}

Note that input core keeps track of number of users for the device and
makes sure that dev->open() is called only when the first user connects
to the device and that dev->close() is called when the very last user
disconnects. Calls to both callbacks are serialized.

The open() callback should return a 0 in case of success or any nonzero value
in case of failure. The close() callback (which is void) must always succeed.


1.3 Basic event types
~~~~~~~~~~~~~~~~~~~~~
The most simple event type is EV_KEY, which is used for keys and buttons.
It's reported to the input system via:


input_report_key(struct input_dev *dev, int code, int value)

See linux/input.h for the allowable values of code (from 0 to KEY_MAX).
Value is interpreted as a truth value, ie any nonzero value means key
pressed, zero value means key released.
The input code generates events only
in case the value is different from before.


In addition to EV_KEY, there are two more basic event types: EV_REL and
EV_ABS. They are used for relative and absolute values supplied by the
device.
A relative value may be for example a mouse movement in the X axis.
The mouse reports it as a relative difference from the last position,
because it doesn't have any absolute coordinate system to work in. Absolute
events are namely for joysticks and digitizers - devices that do work in an
absolute coordinate systems.


Having the device report EV_REL buttons is as simple as with EV_KEY, simply  相对坐标
set the corresponding bits and call the

input_report_rel(struct input_dev *dev, int code, int value)


function. Events are generated only for nonzero value.


However EV_ABS requires a little special care. Before calling   绝对坐标有关
input_register_device, you have to fill additional fields in the input_dev
struct for each absolute axis your device has. If our button device had also
the ABS_X axis:


button_dev.absmin[ABS_X] = 0;
button_dev.absmax[ABS_X] = 255;
button_dev.absfuzz[ABS_X] = 4;
button_dev.absflat[ABS_X] = 8;


Or, you can just say:
input_set_abs_params(button_dev, ABS_X, 0, 255, 4, 8);


This setting would be appropriate for a joystick X axis, with the minimum of
0, maximum of 255 (which the joystick *must* be able to reach, no problem if
it sometimes reports more, but it must be able to always reach the min and
max values), with noise in the data up to +- 4, and with a center flat
position of size 8.


If you don't need absfuzz and absflat, you can set them to zero, which mean
that the thing is precise and always returns to exactly the center position
(if it has any).


1.4 BITS_TO_LONGS(), BIT_WORD(), BIT_MASK()
~~~~~~~~~~~~~~~~~~~~~~~~~~

These three macros from bitops.h help some bitfield computations:

BITS_TO_LONGS(x) - returns the length of a bitfield array in longs for
  x bits
BIT_WORD(x) - returns the index in the array in longs for bit x
BIT_MASK(x) - returns the index in a long for bit x


1.5 The id* and name fields
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The dev->name should be set before registering the input device by the input
device driver. It's a string like 'Generic button device' containing a
user friendly name of the device.


The id* fields contain the bus ID (PCI, USB, ...), vendor ID and device ID
of the device. The bus IDs are defined in input.h. The vendor and device ids
are defined in pci_ids.h, usb_ids.h and similar include files. These fields
should be set by the input device driver before registering it.


The idtype field can be used for specific information for the input device
driver.


The id and name fields can be passed to userland via the evdev interface.


1.6 The keycode, keycodemax, keycodesize fields
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
These three fields should be used by input devices that have dense keymaps.
The keycode is an array used to map from scancodes to input system keycodes.
The keycode max should contain the size of the array and keycodesize the
size of each entry in it (in bytes).


Userspace can query and alter current scancode to keycode mappings using
EVIOCGKEYCODE and EVIOCSKEYCODE ioctls on corresponding evdev interface.
When a device has all 3 aforementioned fields filled in, the driver may
rely on kernel's default implementation of setting and querying keycode
mappings.


1.7 dev->getkeycode() and dev->setkeycode()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
getkeycode() and setkeycode() callbacks allow drivers to override default
keycode/keycodesize/keycodemax mapping mechanism provided by input core
and implement sparse keycode maps.


1.8 Key autorepeat
~~~~~~~~~~~~~~~~~~

... is simple. It is handled by the input.c module. Hardware autorepeat is
not used, because it's not present in many devices and even where it is
present, it is broken sometimes (at keyboards: Toshiba notebooks). To enable
autorepeat for your device, just set EV_REP in dev->evbit.
All will be
handled by the input system.


1.9 Other event types, handling output events
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


The other event types up to now are:


EV_LED - used for the keyboard LEDs.
EV_SND - used for keyboard beeps.


They are very similar to for example key events, but they go in the other
direction - from the system to the input device driver.
If your input device
driver can handle these events, it has to set the respective bits in evbit,
*and* also the callback routine:


button_dev->event = button_event;

int button_event(struct input_dev *dev, unsigned int type, unsigned int code, int value);
{
if (type == EV_SND && code == SND_BELL) {
outb(value, BUTTON_BELL);
return 0;
}
return -1;
}


This callback routine can be called from an interrupt or a BH (although that

isn't a rule), and thus must not sleep, and must not take too long to finish.




这篇关于Documentation\input\input-programming.txt(输入子系统驱动编写)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/879051

相关文章

C++的模板(八):子系统

平常所见的大部分模板代码,模板所传的参数类型,到了模板里面,或实例化为对象,或嵌入模板内部结构中,或在模板内又派生了子类。不管怎样,最终他们在模板内,直接或间接,都实例化成对象了。 但这不是唯一的用法。试想一下。如果在模板内限制调用参数类型的构造函数会发生什么?参数类的对象在模板内无法构造。他们只能从模板的成员函数传入。模板不保存这些对象或者只保存他们的指针。因为构造函数被分离,这些指针在模板外

WDF驱动开发-WDF总线枚举(一)

支持在总线驱动程序中进行 PnP 和电源管理 某些设备永久插入系统,而其他设备可以在系统运行时插入和拔出电源。 总线驱动 必须识别并报告连接到其总线的设备,并且他们必须发现并报告系统中设备的到达和离开情况。 总线驱动程序标识和报告的设备称为总线的 子设备。 标识和报告子设备的过程称为 总线枚举。 在总线枚举期间,总线驱动程序会为其子 设备创建设备对象 。  总线驱动程序本质上是同时处理总线枚

BD错误集锦8——在集成Spring MVC + MyBtis编写mapper文件时需要注意格式 You have an error in your SQL syntax

报错的文件 <?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE mapperPUBLIC "-//mybatis.org//DTD Mapper 3.0//EN""http://mybatis.org/dtd/mybatis-3-mapper.dtd"><mapper namespace="com.yuan.dao.YuanUserDao"><!

如何利用echarts编写立体的柱状图表

1、引入 import * as echarts from 'echarts' 2、创建图标容器 3、调用渲染 <template><div ref="eachrtsBox" style="width: 200px;height: 200px;"></div></template><script>import * as echarts from 'echarts'export d

【Python如何输入升高和体重判断你是偏胖还是偏瘦】

1、求体质指数得Python代码如下: # BMI(Body Mass Index)指数:简称体质指数,# 是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准。# 常用指标:BMI<18.5 偏瘦 18.5<=MBI<=24 正常 MBI>24 偏胖# 计算公式:BMI=体重kg/身高的平方ma = eval(input("请输入你的体重(kg):")) # 输入体重b = e

Apple - Media Playback Programming Guide

本文翻译整理自:Media Playback Programming Guide(Updated: 2018-01-16 https://developer.apple.com/library/archive/documentation/AudioVideo/Conceptual/MediaPlaybackGuide/Contents/Resources/en.lproj/Introduction

网页脚本输入这么简单

如何在网页中进行脚本操作呢? 研究了一下,很简单,用google浏览器的Console直接操作javaScript。思路: Created with Raphaël 2.1.0 开始 输入(如何输入) 点击(如何点击) 结束 下面是,通过脚本刷直播屏的实现,直接在Console输入即可 var words=new Arra

WDF驱动开发-特定于KMDF的技术(一)

这部分的技术是一些零散的记录知识点,它们主要是在WDF框架中特定于KMDF的部分。 将内核模式驱动程序框架和非 PnP 驱动程序配合使用 如果要为不支持 即插即用 (PnP) 的设备编写驱动程序,则驱动程序必须: 在 WDF_DRIVER_CONFIG 结构的 DriverInitFlags 成员中设置 WdfDriverInitNonPnpDriver 标志;提供 EvtDriverUnl

ADD属性驱动架构设计(一)

目录 一、架构设计过程 1.1、架构设计过程 1.1.1、设计目的 1.1.2、质量属性(非功能需求) 1.1.3、核心功能(功能需求) 1.1.4、架构关注 1.1.5、约束条件 1.2、基于设计过程 二、什么是ADD? 三、为什么选择ADD? 四、作用 五、ADD实现步骤 5.1、架构设计目标 5.1.1、系统类型确定  5.1.2、系统阶段确定 5.2、建

oracle数据导出txt及导入txt

oracle数据导出txt及导入txt ORACLE数据导出TXT及从TXT导入: 导出到TXT文件: 1、用PL/SQL DEV打开CMD窗口。 2、spool d:/output.txt; 3、set heading off; --去掉表头 4、select * from usergroup; 5、spool off; www.2ct