C++allocator类

2024-04-06 03:28
文章标签 c++ allocator

本文主要是介绍C++allocator类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

new的缺陷

new有一些灵活性上的局限,其中一方面表现在它将内存分配和对象构造组合在了一起。

类似的,delete将对象析构和内存释放组合在了一起。我们分配单个对象时,通常希望将内存分配和对象初始化组合在一起。

因为在这种情况下,我们几乎肯定知道对象应有什么值。

当分配一大块内存时,我们通常计划在这块内存上按需构造对象。

在此情况下,我们希望将内存分配和对象构造分离。这意味着我们可以分配大块内存,但只在真正需要时才真正执行对象创建操作(同时付出一定开销)。

一般情况下,将内存分配和对象构造组合在一起可能会导致不必要的浪费。

例如:

string*const new string[n]; //构造n个空string
string s;
string*q = p;// q指向第一个string
while (cin >> s && q !=p + n)
*g++ = s; //赋予*q一个新值
const size_t size=q-p; //记住我们读取了多少个string
//使用数组
delete[] p; // p指向一个数组;记得用delete[]来释放

new表达式分配并初始化了n个string。

但是,我们可能不需要n个string,少量string可能就足够了。这样,我们就可能创建了一些永远也用不到的对象。

而且,对于那些确实要使用的对象,我们也在初始化之后立即赋予了它们新值。每个使用到的元素都被赋值了两次:第一次是在默认初始化时,随后是在赋值时。

更重要的是,那些没有默认构造函数的类就不能动态分配数组了。

allocator类

标准库allocator类定义在头文件memory中,它帮助我们将内存分配和对象构造分离开来。

它提供一种类型感知的内存分配方法,它分配的内存是原始的、未构造的。

类似 vector, allocator 是一个模板。

为了定义一个allocator对象,我们必须指明这个allocator 可以分配的对象类型。

当一个allocator对象分配内存时,它会根据给定的对象类型来确定恰当的内存大小和对齐位置:

allocator<string> alloc; //可以分配string的allocator对象
auto const p = alloc.allocate (n); // 分配n个未初始化的string

这个allocate调用为n个string分配了内存。

标准库allocator类及其算法

标准库allocator类及其算法
 allocator<T> a定义了一个名为a的allocator 对象,它可以为类型为T的对象分配内存
a.allocate(n)分配一段原始的、未构造的内存,保存n个类型为T的对象
a.deallocate(p, n)释放从T*指针p中地址开始的内存,这块内存保存了n个类型为T的对象;p必须是一个先前由allocate返回的指针,且n必须是p创建时所要求的大小。在调用deallocate之前,用户必须对每个在这块内存中创建的对象调用destroy
a.construct (p, args)p必须是一个类型为T*的指针,指向一块原始内存;arg 被传递给类型为T的构造函数,用来在p指向的内存中构造个对象
a.destroy(p)p为T*类型的指针,此算法对p指向的对象执行析构函数

allocator分配未构造的内存

allocator分配的内存是未构造的。我们按需要在此内存中构造对象。

在新标准库中,construct成员函数接受一个指针和零个或多个额外参数,在给定位置构造一个元素。额外参数用来初始化构造的对象。

类似make_shared的参数,这些额外参数必须是与构造的对象的类型相匹配的合法的初始化器:

auto q=p;// q指向最后构造的元素之后的位置
alloc.constuct(g++);// *q为空字符串
alloc.construct(g++, 10,'c'); // *g为cccccccccc
alloc.construct (q++, "hi"); // *q为hi!

在早期版本的标准库中,construct只接受两个参数:指向创建对象位置的指针和一个元素类型的值。因此,我们只能将一个元素拷贝到未构造空间中,而不能用元素类型的任何其他构造函数来构造一一个元素。

还未构造对象的情况下就使用原始内存是错误的:

cout << *p << endl;// 正确:使用 string的输出运算符
cout << *g << endl;// 灾难:q指向未构造的内存!

为了使用allocate返回的内存,我们必须用 construct构造对象。使用未构造的内存,其行为是未定义的。

当我们用完对象后,必须对每个构造的元素调用destroy来销毁它们。函数destroy接受一个指针,对指向的对象执行析构函数;

while (q != p)
alloc.destroy(--q);//释放我们真正构造的string

在循环开始处,q指向最后构造的元素之后的位置。我们在调用destroy之前对q进行了递减操作。因此,第一次调用destroy时,q指向最后一个构造的元素。最后一步循环中我们destroy了第一个构造的元素,随后q将与p相等,循环结束。

我们只能对真正构造了的元素进行destroy操作。

一旦元素被销毁后,就可以重新使用这部分内存来保存其他string,也可以将其归还给系统。释放内存通过调用deallocate来完成:

alloc.deallocate (p, n);

我们传递给deallocate的指针不能为空,它必须指向由allocate分配的内存

而且,传递给deallocate的大小参数必须与调用allocated 分配内存时提供的大小参数具有一样的值。

拷贝和填充未初始化内存的算法

标准库还为allocator类定义了两个伴随算法,可以在未初始化内存中创建对象。表12.8描述了这些函数,
它们都定义在头文件memory中。

allocator算法
uninitialized_copy (b, e, b2)从迭代器b和e指出的输入范围中拷贝元素到迭代器b2 指定的未构造的原始内存中。b2指向的内存必须足够大,能容纳输入序列中元素的拷贝
uninitialized_copy_n(b, n, b2)从迭代器b指向的元素开始,拷贝n个元素到b2开始的内存中
uninitialized fill(b, e, t)在迭代器b和e指定的原始内存范围中创建对象,对象的值均为t的拷贝
uninitialized fill n(b,n,t)从迭代器b指向的内存地址开始创建n个对象。b必须指向足够大的未构造的原始内存,能够容纳给定数量的对象

这些函数在给定目的位置创建元素,而不是由系统分配内存给它们。


作为一个例子,假定有一个int的vector,希望将其内容拷贝到动态内存中。我们将分配一块比vector中元素所占用空间大一倍的动态内存,然后将原vector中的元素拷贝到前一半空间,对后一半空间用一个给定值进行填充:

// 分配比 vi 中元素所占用空间大一倍的动态内存 484
auto p=alloc.allocate (vi,size()*2);
// 通过拷贝vi中的元素来构造从p开始的元素
auto g - uninitialized_copy (vi.begin(), vi.end(), p);
// 将剩余元素初始化为 42
uninitialized fill n(q, vi.size(), 42);

类似拷贝算法,uninitialized_copy接受三个迭代器参数。前两个表示输入序列,第三个表示这些元素将要拷贝到的目的空间。

传递给uninitialized_copy的目的位置迭代器必须指向未构造的内存。与copy不同uninitialized_copy在给定目的位置构造元素。

类似 copy,uninitialized copy返回(递增后的)目的位置迭代器。

因此,一次uninitialized_copy调用会返回一个指针,指向最后一个构造的元素之后的位置。在本例中,我们将此指针保存在q中,然后将q传递给uninitialized fill n。此函数类似 fill_n,接受一个指向目的位置的指针、一个计数和一个值。

它会在目的位置指针指向的内存中创建给定数目个对象,用给定值对它们进行初始化。

这篇关于C++allocator类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/878885

相关文章

C++一个数组赋值给另一个数组方式

《C++一个数组赋值给另一个数组方式》文章介绍了三种在C++中将一个数组赋值给另一个数组的方法:使用循环逐个元素赋值、使用标准库函数std::copy或std::memcpy以及使用标准库容器,每种方... 目录C++一个数组赋值给另一个数组循环遍历赋值使用标准库中的函数 std::copy 或 std::

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

使用C/C++调用libcurl调试消息的方式

《使用C/C++调用libcurl调试消息的方式》在使用C/C++调用libcurl进行HTTP请求时,有时我们需要查看请求的/应答消息的内容(包括请求头和请求体)以方便调试,libcurl提供了多种... 目录1. libcurl 调试工具简介2. 输出请求消息使用 CURLOPT_VERBOSE使用 C