ACM-ICPC 2018 焦作赛区网络预赛 B. Mathematical Curse

2024-04-05 20:48

本文主要是介绍ACM-ICPC 2018 焦作赛区网络预赛 B. Mathematical Curse,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目:点击打开链接

题意:有n个数和m个运算符,按顺序选m个数进行运算,初值为k,问最后能得到的最大值是多少。

分析:dp[i][j]表示选到了第i个数时用了j个运算符,观察发现,一个数只能由它前一个状态的最大值或最小值转移过来(因为乘上一个负数会使最小的数变最大),所以我们同时维护最大最小。

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#pragma comment(linker, "/STACK:102400000,102400000")
#include<unordered_map>
#include<unordered_set>
#include<algorithm>
#include<iostream>
#include<fstream>
#include<complex>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iomanip>
#include<string>
#include<cstdio>
#include<bitset>
#include<vector>
#include<cctype>
#include<cmath>
#include<ctime>
#include<stack>
#include<queue>
#include<deque>
#include<list>
#include<set>
#include<map>
using namespace std;
#define pt(a) cout<<a<<endl
#define debug test
#define mst(ss,b) memset((ss),(b),sizeof(ss))
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define ll long long
#define ull unsigned long long
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
#define eps 1e-10
#define PI acos(-1.0)
typedef pair<int,int> PII;
const ll mod = 1e9+7;
const int N = 1e3+10;ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
ll qp(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
int to[4][2]={{-1,0},{1,0},{0,-1},{0,1}};ll t,n,m,k,num[N],dpmin[N][6],dpmax[N][6];
char s[10];int main() {ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);cin>>t;while(t--) {mst(dpmin,0),mst(dpmax,0);cin>>n>>m>>k;rep(i,1,n) cin>>num[i];cin>>s+1;rep(i,0,n) dpmin[i][0]=dpmax[i][0]=k;rep(i,1,n) {rep(j,1,m) {if(i<j) continue;///特判if(s[j]=='+') {dpmin[i][j]=min(dpmin[i-1][j-1]+num[i],dpmax[i-1][j-1]+num[i]);dpmax[i][j]=max(dpmin[i-1][j-1]+num[i],dpmax[i-1][j-1]+num[i]);}else if(s[j]=='-') {dpmin[i][j]=min(dpmin[i-1][j-1]-num[i],dpmax[i-1][j-1]-num[i]);dpmax[i][j]=max(dpmin[i-1][j-1]-num[i],dpmax[i-1][j-1]-num[i]);}else if(s[j]=='*') {dpmin[i][j]=min(dpmin[i-1][j-1]*num[i],dpmax[i-1][j-1]*num[i]);dpmax[i][j]=max(dpmin[i-1][j-1]*num[i],dpmax[i-1][j-1]*num[i]);}else if(s[j]=='/') {dpmin[i][j]=min(dpmin[i-1][j-1]/num[i],dpmax[i-1][j-1]/num[i]);dpmax[i][j]=max(dpmin[i-1][j-1]/num[i],dpmax[i-1][j-1]/num[i]);}if(i==j) {continue;}///if(i>j) {///dpmin[i][j]=min(dpmin[i-1][j],dpmin[i][j]);dpmax[i][j]=max(dpmax[i-1][j],dpmax[i][j]);///}}}cout<<dpmax[n][m]<<endl;}return 0;
}

 

这篇关于ACM-ICPC 2018 焦作赛区网络预赛 B. Mathematical Curse的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/878111

相关文章

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

BUUCTF靶场[web][极客大挑战 2019]Http、[HCTF 2018]admin

目录   [web][极客大挑战 2019]Http 考点:Referer协议、UA协议、X-Forwarded-For协议 [web][HCTF 2018]admin 考点:弱密码字典爆破 四种方法:   [web][极客大挑战 2019]Http 考点:Referer协议、UA协议、X-Forwarded-For协议 访问环境 老规矩,我们先查看源代码

poj 3181 网络流,建图。

题意: 农夫约翰为他的牛准备了F种食物和D种饮料。 每头牛都有各自喜欢的食物和饮料,而每种食物和饮料都只能分配给一头牛。 问最多能有多少头牛可以同时得到喜欢的食物和饮料。 解析: 由于要同时得到喜欢的食物和饮料,所以网络流建图的时候要把牛拆点了。 如下建图: s -> 食物 -> 牛1 -> 牛2 -> 饮料 -> t 所以分配一下点: s  =  0, 牛1= 1~

poj 3068 有流量限制的最小费用网络流

题意: m条有向边连接了n个仓库,每条边都有一定费用。 将两种危险品从0运到n-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。 求最小的费用是多少。 解析: 抽象出一个源点s一个汇点t,源点与0相连,费用为0,容量为2。 汇点与n - 1相连,费用为0,容量为2。 每条边之间也相连,费用为每条边的费用,容量为1。 建图完毕之后,求一条流量为2的最小费用流就行了

poj 2112 网络流+二分

题意: k台挤奶机,c头牛,每台挤奶机可以挤m头牛。 现在给出每只牛到挤奶机的距离矩阵,求最小化牛的最大路程。 解析: 最大值最小化,最小值最大化,用二分来做。 先求出两点之间的最短距离。 然后二分匹配牛到挤奶机的最大路程,匹配中的判断是在这个最大路程下,是否牛的数量达到c只。 如何求牛的数量呢,用网络流来做。 从源点到牛引一条容量为1的边,然后挤奶机到汇点引一条容量为m的边

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络 服务器端配置 在服务器端,你需要确保安装了必要的驱动程序和软件包,并且正确配置了网络接口。 安装 OFED 首先,安装 Open Fabrics Enterprise Distribution (OFED),它包含了 InfiniBand 所需的驱动程序和库。 sudo