51单片机入门_江协科技_19~20_OB记录的笔记

2024-04-05 06:28

本文主要是介绍51单片机入门_江协科技_19~20_OB记录的笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

19. 串口通讯

  • 19.1. 串口介绍:
    •串口是一种应用十分广泛的通讯接口,串口成本低、容易使用、通信线路简单,可实现两个设备的互相通信。
    •单片机的串口可以使单片机与单片机、单片机与电脑、单片机与各式各样的模块互相通信,极大的扩展了单片机的应用范围,增强了单片机系统的硬件实力。
    •51单片机内部自带UART(Universal Asynchronous Receiver Transmitter,通用异步收发器),可实现单片机的串口通信。
    在这里插入图片描述

  • 19.2. 串口硬件电路
    •简单双向串口通信有两根通信线(发送端TXD和接收端RXD)
    •TXD与RXD要交叉连接,TXD Transmit Exchange Data;RXD Receive Exchange Data
    •当只需单向的数据传输时,可以直接一根通信线
    •当电平标准不一致时,需要加电平转换芯片
    在这里插入图片描述

  • 19.3. 电平标准
    •电平标准是数据1和数据0的表达方式,是传输线缆中人为规定的电压与数据的对应关系,串口常用的电平标准有如下三种:
    •TTL电平:+5V表示1,0V表示0
    •RS232电平:-3-15V表示1,+3+15V表示0
    •RS485电平:两线压差+2+6V表示1,-2-6V表示0(差分信号)

  • 19.4. 接口及引脚定义
    在这里插入图片描述

  • 19.5. 常见通讯接口比较:
    在这里插入图片描述

  • 相关的术语有:
    •全双工:通信双方可以在同一时刻互相传输数据
    •半双工:通信双方可以互相传输数据,但必须分时复用一根数据线
    •单工:通信只能有一方发送到另一方,不能反向传输
    •异步:通信双方各自约定通信速率
    •同步:通信双方靠一根时钟线来约定通信速率
    •总线:连接各个设备的数据传输线路(类似于一条马路,把路边各住户连接起来,使住户可以相互交流)

  • 19.6. 51单片机的UART
    •STC89C52有1个UART
    •STC89C52的UART有四种工作模式:
    模式0:同步移位寄存器
    模式1:8位UART,波特率可变(常用)
    模式2:9位UART,波特率固定
    模式3:9位UART,波特率可变
    在这里插入图片描述

  • 19.7. 串口参数及时序图
    •波特率:串口通信的速率(发送和接收各数据位的间隔时间)
    •检验位:用于数据验证,奇校验,偶数个1的时,校验位补1,奇数个1的时候,校验位补0;
    •停止位:用于数据帧间隔
    在这里插入图片描述

  • 19.8. 串口模式图
    在这里插入图片描述

    •SBUF:串口数据缓存寄存器,物理上是两个独立的寄存器,但占用相同的地址。写操作时,写入的是发送寄存器,读操作时,读出的是接收寄存器

  • 19.9. 串口和中断系统
    在这里插入图片描述

  • 19.10. 串口相关寄存器
    在这里插入图片描述

  • 19.11. 数据显示模式
    •HEX模式/十六进制模式/二进制模式:以原始数据的形式显示
    •文本模式/字符模式:以原始数据编码后的形式显示

20. 串口向电脑发送数据&电脑通过串口控制LED

  • 20.1. STC89C52手册中的串口介绍如下:

  • STC89C52系列单片机内部集成一个功能很全双工串行通信口,与传统8051单片机的串口完全兼容。设2个互相独立的接收、发送缓冲器,可以同时发送和接收数据。发送缓冲器只能写而不能读出,接收缓冲器只能读出而不能写入,因而两个缓冲器可以共用一个地址码(99H)。两个缓冲器统称串行通信特殊功能寄存器SBUF。

  • 串行通信设有4种工作方式,其中两种方式的波特率是可变的,另两种是固定的,以供不同应用场合选用。波特率由内部定时器/计数器产生,用软件设置不同的波特率和选择不同的工作方式。主机可通过查询或中断方式对接收/发送进行程序处理,使用十分灵活。

  • STC89C52系列单片机串行口对应的硬件部分对应的管脚是P3.0/RxD和P3.1/TxD。

  • STC89C52系列单片机的串行通信口,除用于数据通信外,还可方便地构成一个或多个并
    行I/O口,或作串—并转换,或用于扩展串行外设等。
    在这里插入图片描述

  • 20.2. 串口通讯程序初始化(新建工程8-1 串口向电脑发送数据),需要增加之前的模块程序“delay_xms.h”
    在这里插入图片描述

  • 20.3. 串口相关寄存器的配置:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • SM0=0, SM1=1, 适配当前学习环境

  • SM2=0;

  • REN=1单片机接受数据,测试程序REN=0先给0用于测试;

  • TB8=0, RB8=0;

  • TI=0必须用软件复位;标志位,发送后必须软件复位置0;

  • RI=0;

  • 综上SCON=0100 0000B=0x40;

在这里插入图片描述

  • SBUF初始化无需配置;

  • PCON初始化配置借助STC-ISP进行波特率的配置;

  • 除此以外还需要配置定时器,这里配置的是定时器1,因为定时器配置中涉及波特率计算,作者借助STC-ISP的工具直接进行配置,配置中的各项参数设置如图:
    在这里插入图片描述

  • 初始化函数如下

void Uart_Init(void)	//4800bps@12.000MHz
{PCON |= 0x80;	//使能波特率倍速位SMOD,加倍波特率减少误差SCON = 0x50;	//8位数据,可变波特率//AUXR &= 0xBF;	//定时器时钟12T模式//AUXR &= 0xFE;	//串口1选择定时器1为波特率发生器TMOD &= 0x0F;	//设置定时器模式TMOD |= 0x20;	//设置定时器模式TL1 = 0xF3;		//设置定时初始值TH1 = 0xF3;		//设置定时重载值ET1 = 0;		//禁止定时器1中断TR1 = 1;		//启动定时器1
}
  • 20.4. 测试发送数据0x66;
#include <REGX52.h>
#include "delay_xms.h"void Uart_Init(void)	//4800bps@12.000MHz
{PCON |= 0x80;	//使能波特率倍速位SMOD,加倍波特率减少误差SCON = 0x50;	//8位数据,可变波特率//AUXR &= 0xBF;	//定时器时钟12T模式//AUXR &= 0xFE;	//串口1选择定时器1为波特率发生器TMOD &= 0x0F;	//设置定时器模式TMOD |= 0x20;	//设置定时器模式TL1 = 0xF3;		//设置定时初始值TH1 = 0xF3;		//设置定时重载值ET1 = 0;		//禁止定时器1中断TR1 = 1;		//启动定时器1
}void Uart_SendByte(unsigned char Byte)
{SBUF=Byte;while(TI==0);//判断是否发送TI=0;		//发送后置0
}void main()
{Uart_Init();Uart_SendByte(0x66);while(1){}}
  • Proteus中测试验证无误;
    在这里插入图片描述

  • STC-ISP中显示结果无误
    在这里插入图片描述

  • 20.5. 一个问题,如果程序稍微修改一下,重复快速发送数据0x66,有概率实际开发板接收数据为96(作者视频中演示),需要在发送语句后面加入1ms延时,以减少出错概率,main函数修改为如下:

void main()
{Uart_Init();while(1){Uart_SendByte(0x66);//重复发送数据66delay_xms(1);//1ms的延时用于防止发送数据错误}}
  • 20.6. 测试每隔1s发送一个数字,数字累加,程序如下:
#include <REGX52.h>
#include "delay_xms.h"
unsigned char sec;
void Uart_Init(void)	//4800bps@12.000MHz
{PCON |= 0x80;	//使能波特率倍速位SMOD,加倍波特率减少误差SCON = 0x50;	//8位数据,可变波特率//AUXR &= 0xBF;	//定时器时钟12T模式//AUXR &= 0xFE;	//串口1选择定时器1为波特率发生器TMOD &= 0x0F;	//设置定时器模式TMOD |= 0x20;	//设置定时器模式TL1 = 0xF3;		//设置定时初始值TH1 = 0xF3;		//设置定时重载值ET1 = 0;		//禁止定时器1中断TR1 = 1;		//启动定时器1
}void Uart_SendByte(unsigned char Byte)
{SBUF=Byte;while(TI==0);//判断是否发送TI=0;		//发送后置0
}void main()
{Uart_Init();while(1){Uart_SendByte(sec);sec++;delay_xms(1000);}}

模拟仿真结果如下:
在这里插入图片描述

  • 20.7. 示例程序STC-ISP中借用串口助手发送数据,开发板接受到相关的数据后在P2的8个LED灯中显示LED灯的相应状态:
#include <REGX52.h>
#include "delay_xms.h"
#include "Uart.h"void main()
{Uart_Init();while(1){}}void Uart_Routine() interrupt 4 //函数名任意,主要是interrupt 4定义中断
{if(RI==1) //判断接收数据中断P2=~SBUF; //接收到的数据取反后赋值P2口RI=0; //RI置0,等待下次接收数据判断}
  • 模块化程序的Uart.c程序如下:
#include <REGX52.h>
/*** @brief 串口初始化4800bps@12.000MHz* @param 无* @retval 无*/void Uart_Init(void)	//4800bps@12.000MHz
{PCON |= 0x80;	//使能波特率倍速位SMOD,加倍波特率减少误差SCON = 0x50;	//8位数据,可变波特率,可接收数据//AUXR &= 0xBF;	//定时器时钟12T模式//AUXR &= 0xFE;	//串口1选择定时器1为波特率发生器TMOD &= 0x0F;	//设置定时器模式TMOD |= 0x20;	//设置定时器模式TL1 = 0xF3;		//设置定时初始值TH1 = 0xF3;		//设置定时重载值ET1 = 0;		//禁止定时器1中断TR1 = 1;		//启动定时器1EA=1;			//启动所有中断ES=1;			//启动串口中断
}/*** @brief 串口发送一个字节数据* @param Byte 要发送的一个字节数据* @retval 无*/void Uart_SendByte(unsigned char Byte)
{SBUF=Byte;while(TI==0);//判断是否发送TI=0;		//发送后置0
}
  • 模块化程序的Uart.h如下:
#ifndef _UART_H_ 
#define _UART_H_  void Uart_Init();
void Uart_SendByte(unsigned char Byte);#endif
  • STC-ISP中发送数字11(0001 0001 B)有2个灯亮起,测试没有问题;;

在这里插入图片描述
在这里插入图片描述

这篇关于51单片机入门_江协科技_19~20_OB记录的笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877847

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

Python FastAPI入门安装使用

《PythonFastAPI入门安装使用》FastAPI是一个现代、快速的PythonWeb框架,用于构建API,它基于Python3.6+的类型提示特性,使得代码更加简洁且易于绶护,这篇文章主要介... 目录第一节:FastAPI入门一、FastAPI框架介绍什么是ASGI服务(WSGI)二、FastAP

Spring Retry 实现乐观锁重试实践记录

《SpringRetry实现乐观锁重试实践记录》本文介绍了在秒杀商品SKU表中使用乐观锁和MybatisPlus配置乐观锁的方法,并分析了测试环境和生产环境的隔离级别对乐观锁的影响,通过简单验证,... 目录一、场景分析 二、简单验证 2.1、可重复读 2.2、读已提交 三、最佳实践 3.1、配置重试模板