【Trick】机器学习技术路线

2024-04-05 06:28

本文主要是介绍【Trick】机器学习技术路线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基础组成


1. 感知机(Perceptron)与多层感知机(Multi-layer Perceptron)
● 完全理解感知机和多层感知机
● 理解感知接构成的神经网络
● 通用近似定理(Universal approximation theorem)
● 神经网络如何学习:反向传播算法(Backpropagation)
● 梯度消失或梯度爆炸的问题
2. 卷积神经网络(Convolutional Neural Networks)
● 卷积的运算形式
● 卷积核如何学习
● 卷积层的个数,卷积核的大小,步长,填充,池化层的类型对结果的影响
3. 优化(Optimization)
● 随机梯度下降(stochastic gradient descent)
● 动量(momentum),Nesterov动量
● 自适应方法:RMSprop,Adam等
● 缓解过拟合的技巧:数据增强(Data augmentation),正则化(Regularization),dropout,batch normalization。
4. 激活函数(Actication Function)
● Sigmoid,Tanh,ReLU,EReLU,LeakyReLU,Softmax,Softplus等
● 为什么需要在神经网络中添加激活函数?

经典网络结构


1. 循环神经网络(Recurrent Neural Network)
2. 长短期记忆网络(Long-short Term Memory)
3. Alex架构(Alexnet Architecture)
4. 残差神经网络(ResNet)
5. 图卷积网络(Graph Convolution Networks)
6. 自注意力模型(Transformer)

监督学习


1. K近邻算法(K-nearest Neighbors)
● K近邻一般考虑的是欧式距离,可以尝试使用曼哈顿距离,余弦相似度等
● K近邻的k如何选择(参考训练流程中的超参数寻找)
● K近邻算法的优缺点,比如它的计算复杂度,对噪声数据的敏感性等
from sklearn.neighbors import KNeighborsClassifier
2. 决策树(Decision Tree)
● 理解经典了信息增益方法
● 了解其他的划分准则,比如基尼指数,最小二乘误差等
● 决策树的剪枝方法,比如预剪枝,后剪枝等,以及如何避免过拟合的问题。
from sklearn.tree import DecisionTreeClassifier
3. 集成学习(Ensemble Learning)
● 投票法等朴素方法(比如Bagging,Boosting,Stacking等)
● 主要学习AdaBoost方法和随机森林(Random Forest)方法
● 集成学习的理论基础,偏差-方差(Bias-Variance),泛化误差界等
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier
4. 支撑向量机(Support Vector Machine)
● 不同的损失函数,比如hinge loss,squared hinge loss,logistic loss等
● 使用了核技巧(kernel trick)的支撑向量机。最好可以根据这个理解以下的东西
  ○ 凸优化问题
  ○ 拉格朗日乘数法(Lagrange multiplier)
  ○ 对偶函数(Dual function)
from sklearn.svm import SVC
同时尝试使用不同的核函数(线性核、高斯核与多项式核),看分类的效果。
5. 朴素贝叶斯(Naive Bayes)
● 为什么称之为“朴素”贝叶斯?
● 用不同的概率模型建模,用极大似然估计求解,比如高斯概率模型、多项式概率模型和伯努利概率模型等
from sklearn.naive_bayes import GaussianNB
6. 线性回归(Linear Regression)
● 最小二乘法
● Ridge Regression和Lasso Regression
● Logistic Regression
● 不同的正则化方法,比如L1正则化,L2正则化等。
7. 线性/二次判别分析(Linear/Quadratic Discriminant Analysis)
● LDA和QDA的区别
● 思考QDA与朴素贝叶斯中Gaussian概率模型的关系
● 尝试不同的协方差矩阵估计方法
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
8. 高斯过程分类/回归(Gaussian Process Classification/Regression)
● 不同的核函数,比如线性核,高斯核,多项式核,周期核等
from sklearn.gaussian_process import GaussianProcessClassifier, GaussianProcessRegressor
9. 指标(Metric)
● 了解监督学习通常用哪些指标衡量,比如准确率,精确率,召回率,F1值,AUC,均方误差等
● 对于重复实验,最后不同模型之间的比较,比如$t$-test
10. 训练流程
● 监督学习如何构造训练集
● 监督学习如何寻找超参数(比如cross validation,grid search)

无监督学习


1. K均值算法(K-means)
● 无监督的聚类方法,可以比较一些其他的聚类方法
from sklearn.cluster import KMeans
2. 分解(Decomposition)
● 主成分分析(Principal component analysis)
● 奇异值分解(Singular Value Decomposition)
● PCA和SVD之间的联系
from sklearn.decomposition import PCA, TruncatedSVD
3. 指标(Metric)
了解无监督学习通常用哪些指标衡量,比如轮廓系数,Calinski-Harabasz指数,戴维森-布尔丁指数,平均平方误差,重构误差等

这篇关于【Trick】机器学习技术路线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877846

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业